Cerebrolysin and Recovery After Stroke (CARS): A Randomized, Placebo-Controlled, Double-Blind, Multicenter Trial

Dafin F Muresanu, Wolf-Dieter Heiss, Volker Hoemberg, Ovidiu Bajenaru, Cristian Dinu Popescu, Johannes C Vester, Volker W Rahlfs, Edith Doppler, Dieter Meier, Herbert Moessler, Alla Guekht, Dafin F Muresanu, Wolf-Dieter Heiss, Volker Hoemberg, Ovidiu Bajenaru, Cristian Dinu Popescu, Johannes C Vester, Volker W Rahlfs, Edith Doppler, Dieter Meier, Herbert Moessler, Alla Guekht

Abstract

Background and purpose: The aim of this trial was to investigate whether stroke patients who receive Cerebrolysin show improved motor function in the upper extremities at day 90 compared with patients who receive a placebo.

Methods: This study was a prospective, randomized, double-blind, placebo-controlled, multicenter, parallel-group study. Patients were treated with Cerebrolysin (30 mL/d) or a placebo (saline) once daily for 21 days, beginning at 24 to 72 hours after stroke onset. The patients also participated in a standardized rehabilitation program for 21 days that was initiated within 72 hours after stroke onset. The primary end point was the Action Research Arm Test score on day 90.

Results: The nonparametric effect size on the Action Research Arm Test score on day 90 indicated a large superiority of Cerebrolysin compared with the placebo (Mann-Whitney estimator, 0.71; 95% confidence interval, 0.63-0.79; P<0.0001). The multivariate effect size on global status, as assessed using 12 different outcome scales, indicated a small-to-medium superiority of Cerebrolysin (Mann-Whitney estimator, 0.62; 95% confidence interval, 0.58-0.65; P<0.0001). The rate of premature discontinuation was <5% (3.8%). Cerebrolysin was safe and well tolerated.

Conclusions: Cerebrolysin had a beneficial effect on function and global outcome in early rehabilitation patients after stroke. Its safety was comparable with that of the placebo, suggesting a favorable benefit/risk ratio. Because this study was exploratory and had a relatively small sample size, the results should be confirmed in a large-scale, randomized clinical trial.

Clinical trial registration: URL: http://www.clinicaltrialsregister.eu. Unique identifier: 2007-000870-21.

Keywords: Cerebrolysin; randomized, double-blind, placebo-controlled trial; recovery of function; rehabilitation; stroke.

© 2015 The Authors.

Figures

Figure 1.
Figure 1.
A, Time course of the Action Research Arm Test (ARAT) with Cerebrolysin (30 mL/d) and the placebo, shown as boxplot diagrams (P10 and P90) for days 7 (V3), 14 (V4), and 21 (V5) post baseline and days 42 (V6) and 90 (V7) post stroke. The modified intention-to-treat (mITT) population was analyzed using the last observation carried forward (LOCF) approach for handling missing data. The mITT-LOCF population on day 90 included a total of 205 patients (Cerebrolysin, n=104; placebo, n=101). B, Effect sizes (Mann–Whitney) of the ARAT score changes from baseline in the mITT-LOCF population. Analyses were conducted using the Wilcoxon–Mann–Whitney test.
Figure 2.
Figure 2.
Distribution of modified Rankin Scale scores. Cumulative percentage (Cerebrolysin vs placebo): 8.65 vs 2.97 (0), 42.31 vs 14.85 (1), 65.38 vs 33.66 (2), 88.46 vs 75.25 (3), 98.08 vs 96.04 (4), and 100.0 vs 100.0 (5). Definitions of scores: 0=no symptoms at all; 1=no significant disability despite symptoms: able to carry out all usual duties and activities; 2=slight disability: unable to carry out all previous activities but able to look after own affairs without assistance; 3=moderate disability: requiring some help, but able to walk without assistance; 4=moderately severe disability: unable to walk without assistance and unable to attend to own bodily needs without assistance; 5=severe disability: bedridden, incontinent, and requiring constant nursing care and attention; and 6=dead.
Figure 3.
Figure 3.
Global status on day 90. The effect sizes (Mann–Whitney [MW]) for the single and combined (Wei–Lachin procedure) efficacy parameters reflect changes from baseline in the modified intention-to-treat–last observation carried forward population (n=205). Analyses were conducted using the multivariate, directional Wilcoxon test. MCS indicates mental component summary; mRS, Modified Rankin Scale; and PCS, physical component summary.

References

    1. Murray CJ, Lopez AD. Measuring the global burden of disease. N Engl J Med. 2013;369:448–457. doi: 10.1056/NEJMra1201534.
    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischemic stroke, update August 2014. Stroke. 2014;45:e222–e225. doi: 10.1161/STROKEAHA.114.007024.
    1. Pierot L, Soize S, Benaissa A, Wakhloo AK. Techniques for endovascular treatment of acute ischemic stroke: from intra-arterial fibrinolytics to stent-retrievers. Stroke. 2015;46:909–914. doi: 10.1161/STROKEAHA.114.007935.
    1. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, et al. MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
    1. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, et al. EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792.
    1. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, et al. ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–1030. doi: 10.1056/NEJMoa1414905.
    1. Saver JL, Smith EE, Fonarow GC, Reeves MJ, Zhao X, et al. GWTG-Stroke Steering Committee and Investigators. The “golden hour” and acute brain ischemia: presenting features and lytic therapy in >30,000 patients arriving within 60 minutes of stroke onset. Stroke. 2010;41:1431–1439. doi: 10.1161/STROKEAHA.110.583815.
    1. Zahuranec DB, Majersik JJ. Percentage of acute stroke patients eligible for endovascular treatment. Neurology. 2012;79(13 suppl 1):S22–S25. doi: 10.1212/WNL.0b013e31826957cf.
    1. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–477. doi: 10.1002/ana.20741.
    1. Kaur H, Prakash A, Medhi B. Drug therapy in stroke: from preclinical to clinical studies. Pharmacology. 2013;92:324–334. doi: 10.1159/000356320.
    1. Xu SY, Pan SY. The failure of animal models of neuroprotection in acute ischemic stroke to translate to clinical efficacy. Med Sci Monit Basic Res. 2013;19:37–45.
    1. Tymianski M. Novel approaches to neuroprotection trials in acute ischemic stroke. Stroke. 2013;44:2942–2950. doi: 10.1161/STROKEAHA.113.000731.
    1. Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32:1310–1316. doi: 10.1038/jcbfm.2011.186.
    1. Masliah E, Díez-Tejedor E. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs Today. 2012;48(suppl A):3–24. doi: 10.1358/dot.2012.48(Suppl.A).1739716.
    1. Hartbauer M, Hutter-Paier B, Skofitsch G, Windisch M. Antiapoptotic effects of the peptidergic drug cerebrolysin on primary cultures of embryonic chick cortical neurons. J Neural Transm (Vienna) 2001;108:459–473.
    1. Zhang L, Chopp M, Meier DH, Winter S, Wang L, Szalad A, et al. Sonic hedgehog signaling pathway mediates cerebrolysin-improved neurological function after stroke. Stroke. 2013;44:1965–1972. doi: 10.1161/STROKEAHA.111.000831.
    1. Gutmann B, Hutter-Paier B, Skofitsch G, Windisch M, Gmeinbauer R. In vitro models of brain ischemia: the peptidergic drug cerebrolysin protects cultured chick cortical neurons from cell death. Neurotox Res. 2002;4:59–65. doi: 10.1080/10298420290007637.
    1. Darsalia V, Heldmann U, Lindvall O, Kokaia Z. Stroke-induced neurogenesis in aged brain. Stroke. 2005;36:1790–1795. doi: 10.1161/.
    1. Muresanu DF, Buzoianu A, Florian SI, von Wild T. Towards a roadmap in brain protection and recovery. J Cell Mol Med. 2012;16:2861–2871. doi: 10.1111/j.1582-4934.2012.01605.x.
    1. Ren J, Sietsma D, Qiu S, Moessler H, Finklestein SP. Cerebrolysin enhances functional recovery following focal cerebral infarction in rats. Restor Neurol Neurosci. 2007;25:25–31.
    1. Hanson LR, Liu XF, Ross TM, Doppler E, Zimmermann-Meinzingen S, Moessler H, et al. Cerebrolysin reduces infarct volume in a rat model of focal cerebral ischemic damage. Am J Neuroprotect Neuroregen. 2009;1:60–66. doi: 10.1166/ajnn.2009.1010.
    1. Zhang C, Chopp M, Cui Y, Wang L, Zhang R, Zhang L, et al. Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res. 2010;88:3275–3281. doi: 10.1002/jnr.22495.
    1. Skvortsova VI, Stakhovskaia LV, Gubskiĭ LV, Shamalov NA, Tikhonova IV, Smychkov AS. A randomized, double-blind, placebo-controlled study of Cerebrolysin safety and efficacy in the treatment of acute ischemic stroke. Zh Nevropatol Psikhiatr im S S Korsakova. 2004;S11:51–55.
    1. Ladurner G, Kalvach P, Moessler H Cerebrolysin Study Group. Neuroprotective treatment with cerebrolysin in patients with acute stroke: a randomised controlled trial. J Neural Transm (Vienna) 2005;112:415–428. doi: 10.1007/s00702-004-0248-2.
    1. Ziganshina LE, Abakumova T, Kuchaeva A. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst Rev. 2010;4:CD007026. doi: 10.1002/14651858.CD007026.pub2.
    1. Lang W, Stadler CH, Poljakovic Z, Fleet D Lyse Study Group. A prospective, randomized, placebo-controlled, double-blind trial about safety and efficacy of combined treatment with alteplase (rt-PA) and Cerebrolysin in acute ischaemic hemispheric stroke. Int J Stroke. 2013;8:95–104. doi: 10.1111/j.1747-4949.2012.00901.x.
    1. Heiss WD, Brainin M, Bornstein NM, Tuomilehto J, Hong Z. Cerebrolysin Acute Stroke Treatment in Asia (CASTA) Investigators. Cerebrolysin in patients with acute ischemic stroke in Asia: results of a double-blind, placebo-controlled randomized trial. Stroke. 2012;43:630–636. doi: 10.1161/STROKEAHA.111.628537.
    1. Rogalewski A, Schneider A, Ringelstein EB, Schäbitz WR. Toward a multimodal neuroprotective treatment of stroke. Stroke. 2006;37:1129–1136. doi: 10.1161/01.STR.0000209330.73175.34.
    1. Muresanu DF. Neuromodulation with pleiotropic and multimodal drugs - future approaches to treatment of neurological disorders. Acta Neurochir Suppl. 2010;106:291–294. doi: 10.1007/978-3-211-98811-4_54.
    1. Stan AD, Bădişor A, Bîrle C, Blesneag AV, Opincariu I, Iancu M, et al. The influence of neurotrophic factors treatment on stroke volume. Ro J Neurol. 2013;3:124–129.
    1. Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4:483–492. doi: 10.1097/00004356-198112000-00001.
    1. Posteraro L, Formis A, Grassi E, Bighi M, Nati P, Proietti Bocchini C, et al. Quality of life and aphasia. Multicentric standardization of a questionnaire. Eura Medicophys. 2006;42:227–230.
    1. Goodglass H, Kaplan E. The Assessment of Aphasia and Related Disorders. 2nd. Philadelphia, PA: Lea & Febiger; 1983.
    1. D’Agostino RB, Campbell M, Greenhouse J. The Mann–Whitney statistic: continuous use and discovery. Statist Med. 2006;25:541–542. doi: 10.1002/sim.2508.
    1. Rothmann MD, Wiens BL, Chan IS. Chapter 12.5: Ordinal data. In: Rothmann MD, Wiens BL, Chan IS, editors. In: Design and Analysis of Non-Inferiority Trials. Boca Raton, FL: Chapman & Hall/CRC; 2011. pp. 353–356.
    1. Munzel U, Hauschke D. A nonparametric test for proving non-inferiority in clinical trials with ordered categorical data. Pharmaceut Statist. 2003;2:31–37. doi: 10.1002/pst.17.
    1. Kieser M, Friede T, Gondan M. Assessment of statistical significance and clinical relevance. Stat Med. 2013;32:1707–1719. doi: 10.1002/sim.5634.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
    1. Colditz GA, Miller JN, Mosteller F. Measuring gain in the evaluation of medical technology. The probability of a better outcome. Int J Technol Assess Health Care. 1988;4:637–642. doi: 10.1017/S0266462300007728.
    1. Whitehead J, Branson M, Todd S. A combined score test for binary and ordinal endpoints from clinical trials. Stat Med. 2010;29:521–532. doi: 10.1002/sim.3822.
    1. Lu M, Tilley BC NINDS t-PA Stroke Trial Study Group. Use of odds ratio or relative risk to measure a treatment effect in clinical trials with multiple correlated binary outcomes: data from the NINDS t-PA stroke trial. Stat Med. 2001;20:1891–1901. doi: 10.1002/sim.841.
    1. Tilley BC, Marler J, Geller NL, Lu M, Legler J, Brott T, et al. Use of a global test for multiple outcomes in stroke trials with application to the National Institute of Neurological Disorders and Stroke t-PA Stroke Trial. Stroke. 1996;27:2136–2142.
    1. Wei LJ, Lachin JM. Two-sample asymptotically distribution-free tests for incomplete multivariate observations. J Am Stat Assoc. 1984;79:653–661. doi: 10.1080/01621459.1984.10478093.
    1. Lachin JM. Some large-sample distribution-free estimators and tests for multivariate partially incomplete data from two populations. Stat Med. 1992;11:1151–1170. doi: 10.1002/sim.4780110903.
    1. Tamhane A, Dmitrienko A. In: Analysis of multiple endpoints in clinical trials. Dmitrienko A, Tamhane AC, Bretz F, editors. Vol. 131. Boca Raton, FL: Chapman & Hall/CRC: In: Multiple Testing Problems in Pharmaceutical Statistics.; 2009. p. 163.
    1. Chang BS, Lowenstein DH Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: antiepileptic drug prophylaxis in severe traumatic brain injury: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2003;60:10–16.
    1. Biester K, Lange S, Kaiser T, Potthast R. Paper Presented at: XIV Cochrane Colloquium. Dublin, Ireland: 2006. High dropout rates in trials included in Cochrane reviews.
    1. Higgins JP, Altman DG, Sterne JA. Chapter 8: Assessing risk of bias in included studies. In: Higgins JP, Green S, editors. In: Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011] The Cochrane Collaboration; 2011. . Accessed January 13, 2015.
    1. Bernhardt J, Dewey H, Thrift A, Collier J, Donnan G. A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility. Stroke. 2008;39:390–396. doi: 10.1161/STROKEAHA.107.492363.
    1. Cumming TB, Thrift AG, Collier JM, Churilov L, Dewey HM, Donnan GA, et al. Very early mobilization after stroke fast-tracks return to walking: further results from the phase II AVERT randomized controlled trial. Stroke. 2011;42:153–158. doi: 10.1161/STROKEAHA.110.594598.
    1. Craig LE, Bernhardt J, Langhorne P, Wu O. Early mobilization after stroke: an example of an individual patient data meta-analysis of a complex intervention. Stroke. 2010;41:2632–2636. doi: 10.1161/STROKEAHA.110.588244.
    1. Sundseth A, Thommessen B, Rønning OM. Outcome after mobilization within 24 hours of acute stroke: a randomized controlled trial. Stroke. 2012;43:2389–2394. doi: 10.1161/STROKEAHA.111.646687.
    1. Diserens K, Moreira T, Hirt L, Faouzi M, Grujic J, Bieler G, et al. Early mobilization out of bed after ischaemic stroke reduces severe complications but not cerebral blood flow: a randomized controlled pilot trial. Clin Rehabil. 2012;26:451–459. doi: 10.1177/0269215511425541.
    1. Bernhardt J, Thuy MN, Collier JM, Legg LA. Very early versus delayed mobilisation after stroke. Cochrane Database Syst Rev. 2009;21:CD006187. doi: 10.1002/14651858.CD006187.pub2.
    1. Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d.
    1. Hsieh CL, Hsueh IP, Chiang FM, Lin PH. Inter-rater reliability and validity of the action research arm test in stroke patients. Age Ageing. 1998;27:107–113.
    1. Platz T, Pinkowski C, van Wijck F, Kim IH, di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clin Rehabil. 2005;19:404–411.
    1. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22:78–90. doi: 10.1177/1545968307305353.

Source: PubMed

Подписаться