Effects of local treatment with and without sensorimotor and balance exercise in individuals with neck pain: protocol for a randomized controlled trial

Munlika Sremakaew, Gwendolen Jull, Julia Treleaven, Marco Barbero, Deborah Falla, Sureeporn Uthaikhup, Munlika Sremakaew, Gwendolen Jull, Julia Treleaven, Marco Barbero, Deborah Falla, Sureeporn Uthaikhup

Abstract

Background: Impaired cervical joint position sense and balance are associated with neck pain. Specific therapeutic exercise and manual therapy are effective for improving neck pain and functional ability but their effects on joint position sense and balance impairments remain uncertain. Changes in the joint position sense and balance may need to be addressed specifically. The primary objective is to investigate the most effective interventions to improve impaired cervical joint position sense and balance in individuals with neck pain. The secondary objective is to assess the effectiveness of the interventions on pain intensity and disability, pain location, dizziness symptoms, cervical range of motion, gait speed, functional ability, treatment satisfaction and quality of life.

Methods: A 2 × 2 factorial, single blind RCT with immediate, short- and long-term follow-ups. One hundred and sixty eight participants with neck pain with impaired joint position sense and balance will be recruited into the trial. Participants will be randomly allocated to one of four intervention groups: i) local neck treatment, ii) local treatment plus tailored sensorimotor exercises, iii) local treatment plus balance exercises, and iv) local treatment plus sensorimotor and balance exercises. Participants receive two treatments for 6 weeks. Primary outcomes are postural sway and cervical joint position error. Secondary outcomes include gait speed, dizziness intensity, neck pain intensity, neck disability, pain extent and location, cervical range of motion, functional ability, perceived benefit, and quality of life. Assessment will be measured at baseline, immediately after treatment and at 3, 6, 12 month-follow ups.

Discussion: Neck pain is one of the major causes of disability. Effective treatment must address not only the symptoms but the dysfunctions associated with neck pain. This trial will evaluate the effectiveness of interventions for individuals with neck pain with impaired cervical joint position sense and balance. This trial will impact on clinical practice by providing evidence towards optimal and efficient management.

Trial registration: ClinicalTrials.gov ( NCT03149302 ). May 10, 2017.

Keywords: Balance; Exercises; Manual therapy; Neck pain; Sensorimotor control.

Conflict of interest statement

Ethics approval and consent to participate

This trial was approved by the ethical review committee for research in humans, Faculty of Associated Medical Sciences, Chiang Mai University (AMSEC-60EX-018:175/2560). The trial was conducted in accordance with the Declaration of Helsinki. All participants will be provided information about the study and enrolled into the trial if they meet all eligibility criteria and voluntarily sign an informed consent statement.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow diagram of the trial protocol

References

    1. Daffner SD, Hilibrand AS, Hanscom BS, Brislin BT, Vaccaro AR, Albert TJ. Impact of neck and arm pain on overall health status. Spine (Phila Pa 1976) 2003;28(17):2030–2035. doi: 10.1097/01.BRS.0000083325.27357.39.
    1. Rebbeck T, Sindhusake D, Cameron ID, Rubin G, Feyer AM, Walsh J, et al. A prospective cohort study of health outcomes following whiplash associated disorders in an Australian population. Inj Prev. 2006;12(2):93–98. doi: 10.1136/ip.2005.010421.
    1. Cote P, Cassidy JD, Carroll LJ, Kristman V. The annual incidence and course of neck pain in the general population: a population-based cohort study. Pain. 2004;112(3):267–273. doi: 10.1016/j.pain.2004.09.004.
    1. Picavet HS, Schouten JS. Musculoskeletal pain in the Netherlands: prevalences, consequences and risk groups, the DMC(3)-study. Pain. 2003;102(1-2):167–178. doi: 10.1016/s0304-3959(02)00372-x.
    1. Brandt T. Vertigo: its multisensory syndromes. 1. London: Springer-Verlag; 1991.
    1. Paulus I, Brumagne S. Altered interpretation of neck proprioceptive signals in persons with subclinical recurrent neck pain. J Rehabil Med. 2008;40(6):426–432. doi: 10.2340/16501977-0189.
    1. Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Man Ther. 2008;13(1):2–11. doi: 10.1016/j.math.2007.06.003.
    1. Treleaven J, Jull G, LowChoy N. The relationship of cervical joint position error to balance and eye movement disturbances in persistent whiplash. Man Ther. 2006;11(2):99–106. doi: 10.1016/j.math.2005.04.003.
    1. Treleaven J, Jull G, Sterling M. Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error. J Rehabil Med. 2003;35(1):36–43. doi: 10.1080/16501970306109.
    1. Field S, Treleaven J, Jull G. Standing balance: a comparison between idiopathic and whiplash-induced neck pain. Man Ther. 2008;13(3):183–191. doi: 10.1016/j.math.2006.12.005.
    1. Jorgensen MB, Skotte JH, Holtermann A, Sjogaard G, Petersen NC, Sogaard K. Neck pain and postural balance among workers with high postural demands - a cross-sectional study. BMC Musculoskelet Disord. 2011; 10.1186/1471-2474-12-176.
    1. Kristjansson E, Dall'Alba P, Jull G. A study of five cervicocephalic relocation tests in three different subject groups. Clin Rehabil. 2003;17(7):768–774. doi: 10.1191/0269215503cr676oa.
    1. Revel M, Andre-Deshays C, Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch Phys Med Rehabil. 1991;72(5):288–291.
    1. Kendall JC, Boyle E, Hartvigsen J, Hvid LG, Azari MF, Skjodt M, et al. Neck pain, concerns of falling and physical performance in community-dwelling Danish citizens over 75 years of age: a cross-sectional study. Scand J Public Health. 2016; [Epub ahead of print].
    1. Poole E, Treleaven J, Jull G. The influence of neck pain on balance and gait parameters in community-dwelling elders. Man Ther. 2008;13(4):317–324. doi: 10.1016/j.math.2007.02.002.
    1. Oka H, Matsudaira K, Fujii T, Okazaki H, Shinkai Y, Tsuji Y, et al. Risk factors for prolonged treatment of whiplash-associated disorders. PLoS One. 2015; 10.1371/journal.pone.0132191.
    1. Cobo EP, Mesquida ME, Fanegas EP, Atanasio EM, Pastor MB, Pont CP, et al. What factors have influence on persistence of neck pain after a whiplash? Spine. 2010;35(9):E338–E343. doi: 10.1097/BRS.0b013e3181c9b075.
    1. Jull GA, Stanton WR. Predictors of responsiveness to physiotherapy management of cervicogenic headache. Cephalalgia. 2005;25(2):101–108. doi: 10.1111/j.1468-2982.2004.00811.x.
    1. Phillips LA, Carroll LJ, Cassidy JD, Cote P. Whiplash-associated disorders: who gets depressed? Who stays depressed? Eur Spine J. 2010;19(6):945–956. doi: 10.1007/s00586-010-1276-2.
    1. Miller J, Gross A, D'Sylva J, Burnie SJ, Goldsmith CH, Graham N, et al. Manual therapy and exercise for neck pain: a systematic review. Man Ther. 2010;15(4):334–354. doi: 10.1016/j.math.2010.02.007.
    1. Schroeder J, Kaplan L, Fischer DJ, Skelly AC. The outcomes of manipulation or mobilization therapy compared with physical therapy or exercise for neck pain: a systematic review. Evid based. Spine J. 2013;4(1):30–41.
    1. Reid SA, Rivett DA, Katekar MG, Callister R. Comparison of mulligan sustained natural apophyseal glides and maitland mobilizations for treatment of cervicogenic dizziness: a randomized controlled trial. Phys Ther. 2014;94(4):466–476. doi: 10.2522/ptj.20120483.
    1. Treleaven J, Peterson G, Ludvigsson ML, Kammerlind AS, Peolsson A. Balance, dizziness and proprioception in patients with chronic whiplash associated disorders complaining of dizziness: a prospective randomized study comparing three exercise programs. Man Ther. 2016;22:122–130. doi: 10.1016/j.math.2015.10.017.
    1. Reid SA, Callister R, Katekar MG, Rivett DA. Effects of cervical spine manual therapy on range of motion, head repositioning, and balance in participants with cervicogenic dizziness: a randomized controlled trial. Arch Phys Med Rehabil. 2014;95(9):1603–1612. doi: 10.1016/j.apmr.2014.04.009.
    1. Uthaikhup S, Assapun J, Watcharasaksilp K, Jull G. Effectiveness of physiotherapy for seniors with recurrent headaches associated with neck pain and dysfunction: a randomized controlled trial. Spine J. 2017;17(1):46–55. doi: 10.1016/j.spinee.2016.08.008.
    1. Jull G, Trott P, Potter H, Zito G, Niere K, Shirley D, et al. A randomized controlled trial of exercise and manipulative therapy for cervicogenic headache. Spine (Phila Pa 1976) 2002;27(17):1835–1843. doi: 10.1097/00007632-200209010-00004.
    1. Reid SA, Callister R, Snodgrass SJ, Katekar MG, Rivett DA. Manual therapy for cervicogenic dizziness: long-term outcomes of a randomised trial. Man Ther. 2015;20(1):148–156. doi: 10.1016/j.math.2014.08.003.
    1. Kristjansson E, Treleaven J. Sensorimotor function and dizziness in neck pain: implications for assessment and management. J Orthop Sports Phys Ther. 2009;39(5):364–377. doi: 10.2519/jospt.2009.2834.
    1. Beinert K, Taube W. The effect of balance training on cervical sensorimotor function and neck pain. J Mot Behav. 2013;45(3):271–278. doi: 10.1080/00222895.2013.785928.
    1. Humphreys BK, Irgens P. The effect of a rehabilitation exercise program on head repositioning accuracy and reported levels of pain in chronic neck pain subjects. J Whiplash Relat Disord. 2002;1(1):99–112.
    1. Jull G, Falla D, Treleaven J, Hodges P, Vicenzino B. Retraining cervical joint position sense: the effect of two exercise regimes. J Orthop Res. 2007;25(3):404–412. doi: 10.1002/jor.20220.
    1. Revel M, Minguet M, Gregoy P, Vaillant J, Manuel JL. Changes in cervicocephalic kinesthesia after a proprioceptive rehabilitation program in patients with neck pain: a randomized controlled study. Arch Phys Med Rehabil. 1994;75(8):895–899. doi: 10.1016/0003-9993(94)90115-5.
    1. Schulz KF, Altman DG, Moher D. CONSORT group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9(8):672–677. doi: 10.1016/j.ijsu.2011.09.004.
    1. Roren A, Mayoux-Benhamou MA, Fayad F, Poiraudeau S, Lantz D, Revel M. Comparison of visual and ultrasound based techniques to measure head repositioning in healthy and neck-pain subjects. Man Ther. 2009;14(3):270–277. doi: 10.1016/j.math.2008.03.002.
    1. Treleaven J, Jull G, Lowchoy N. Standing balance in persistent whiplash: a comparison between subjects with and without dizziness. J Rehabil Med. 2005;37(4):224–229. doi: 10.1080/16501970510027989.
    1. Treleaven J, Murison R, Jull G, LowChoy N, Brauer S. Is the method of signal analysis and test selection important for measuring standing balance in subjects with persistent whiplash? Gait Posture. 2005;21(4):395–402. doi: 10.1016/j.gaitpost.2004.04.008.
    1. Jull G, Amiri M, Bullock-Saxton J, Darnell R, Lander C. Cervical musculoskeletal impairment in frequent intermittent headache. Part 1: subjects with single headaches. Cephalalgia. 2007;27(7):793–802. doi: 10.1111/j.1468-2982.2007.01345.x.
    1. Sturnieks DL, Arnold R, Lord SR. Validity and reliability of the swaymeter device for measuring postural sway. BMC Geriatr. 2011; 10.1186/1471-2318-11-63.
    1. Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther. 1986;66(10):1548–1550. doi: 10.1093/ptj/66.10.1548.
    1. Yu LJ, Stokell R, Treleaven J. The effect of neck torsion on postural stability in subjects with persistent whiplash. Man Ther. 2011;16(4):339–343. doi: 10.1016/j.math.2010.12.006.
    1. Swait G, Rushton AB, Miall RC, Newell D. Evaluation of cervical proprioceptive function: optimizing protocols and comparison between tests in normal subjects. Spine (Phila Pa 1976) 2007;32(24):E692–E701. doi: 10.1097/BRS.0b013e31815a5a1b.
    1. Lindemann U, Najafi B, Zijlstra W, Hauer K, Muche R, Becker C, et al. Distance to achieve steady state walking speed in frail elderly persons. Gait Posture. 2008;27(1):91–96. doi: 10.1016/j.gaitpost.2007.02.005.
    1. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age Ageing. 1997;26(1):15–19. doi: 10.1093/ageing/26.1.15.
    1. Kamper SJ, Grootjans SJ, Michaleff ZA, Maher CG, McAuley JH, Sterling M. Measuring pain intensity in patients with neck pain: does it matter how you do it? Pain Pract. 2015;15(2):159–167. doi: 10.1111/papr.12169.
    1. Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for measurement of acute pain. Acad Emerg Med. 2001;8(12):1153–1157. doi: 10.1111/j.1553-2712.2001.tb01132.x.
    1. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF-36 BPS), and measure of intermittent and constant osteoarthritis pain (ICOAP) Arthritis Care Res (Hoboken) 2011;63:240–252. doi: 10.1002/acr.20543.
    1. Uthaikhup S, Paungmali A, Pirunsan U. Validation of thai versions of the neck disability index and neck pain and disability scale in patients with neck pain. Spine (Phila Pa 1976) 2011;36(21):E1415–21. doi: 10.1097/BRS.0b013e31820e68ac.
    1. Vernon H, Mior S. The neck disability index: a study of reliability and validity. J Manip Physiol Ther. 1991;14(7):409–415.
    1. Barbero M, Moresi F, Leoni D, Gatti R, Egloff M, Falla D. Test-retest reliability of pain extent and pain location using a novel method for pain drawing analysis. Eur J Pain. 2015;19(8):1129–1138. doi: 10.1002/ejp.636.
    1. Margolis RB, Chibnall JT, Tait RC. Test-retest reliability of the pain drawing instrument. Pain. 1988;33(1):49–51. doi: 10.1016/0304-3959(88)90202-3.
    1. Audette I, Dumas JP, Cote JN, De Serres SJ. Validity and between-day reliability of the cervical range of motion (CROM) device. J Orthop Sports Phys Ther. 2010;40(5):318–323. doi: 10.2519/jospt.2010.3180.
    1. Westaway MD, Stratford PW, Binkley JM. The patient-specific functional scale: validation of its use in persons with neck dysfunction. J Orthop Sports Phys Ther. 1998;27(5):331–338. doi: 10.2519/jospt.1998.27.5.331.
    1. Lim LL, Seubsman SA, Sleigh A. Thai SF-36 health survey: tests of data quality, scaling assumptions, reliability and validity in healthy men and women. Health Qual Life Outcomes 2008. doi: 10.1186/1477-7525-6-52.
    1. Bombardier C. Outcome assessments in the evaluation of treatment of spinal disorders: summary and general recommendations. Spine (Phila Pa 1976) 2000;25(24):3100–3103. doi: 10.1097/00007632-200012150-00003.
    1. Cohen J. Statistical power analysis for the behavioural sciences. London: Academic Press; 1977.
    1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1545–1602. doi: 10.1016/S0140-6736(16)31678-6.
    1. Maitland GD, Hengeveld E, Banks K, Anglaise K. Vertebral manipulation. 7. Oxford: Butterworth-Heinemann; 2005.
    1. Beer A, Treleaven J, Jull G. Can a functional postural exercise improve performance in the cranio-cervical flexion test?--a preliminary study. Man Ther. 2012;17(3):219–224. doi: 10.1016/j.math.2011.12.005.
    1. Jull G, Sterling M, Falla D, Treleaven J, O'Leary S. Whiplash, headache, and neck pain. Edinburgh: Churchill Livingstone; 2008.

Source: PubMed

Подписаться