Open-label study of the short-term effects of memantine on FDG-PET in frontotemporal dementia

Tiffany W Chow, Ariel Graff-Guerrero, Nicolaas Plg Verhoeff, Malcolm A Binns, David F Tang-Wai, Morris Freedman, Mario Masellis, Sandra E Black, Alan A Wilson, Sylvain Houle, Bruce G Pollock, Tiffany W Chow, Ariel Graff-Guerrero, Nicolaas Plg Verhoeff, Malcolm A Binns, David F Tang-Wai, Morris Freedman, Mario Masellis, Sandra E Black, Alan A Wilson, Sylvain Houle, Bruce G Pollock

Abstract

Background: Memantine has shown effects on cortical metabolism in Alzheimer's disease (AD), and the mechanism of action may not be specific to AD alone. We hypothesized that participants with frontotemporal dementia taking memantine would show an increased cortical metabolic activity in frontal regions, temporal regions, or in salience network hubs.

Methods: Sixteen participants with behavioral or language variant frontotemporal dementia syndromes (FTD) were recruited from tertiary FTD clinics and treated with memantine hydrochloride 10 mg twice daily in this fixed-dose, open-label pilot study. The primary endpoint was enhancement of cortical metabolic activity after 7-8 weeks of treatment. Secondary endpoints were measures of mood and behavior disturbance, frontal executive function, and motor disturbance.

Results: Voxel-wise parametric image analysis of positron emission tomography (PET) data from seven behavioral variant FTD patients, eight semantic dementia patients, and one progressive nonfluent aphasia patient, of mean age 64.3 years, mean duration of illness 4.25 years, and baseline mean sum of boxes Clinical Dementia Rating score 6.59, revealed an increase in [(18)F]-fluorodeoxyglucose (FDG) normalized metabolic activity in bilateral insulae and the left orbitofrontal cortex (P < 0.01). The increase on FDG-PET did not correlate with changes on behavioral inventories. Post hoc analysis indicated that semantic dementia participants drove this finding.

Conclusion: This open-label clinical PET study suggests that memantine induces an increase in metabolism in the salience network in FTD. A placebo-controlled follow-up study is warranted.

Keywords: Alzheimer’s disease; PET scan; frontotemporal dementia; metabolism; semantic dementia.

Figures

Figure 1
Figure 1
Flowchart for recruitment, including early withdrawals.
Figure 2
Figure 2
Clusters of at least 10 voxels in bilateral insulae and left orbitofrontal cortex where the t-contrast for increase between baseline and 2-month FDG-PET normalized metabolic activity had P values <0.01. Color bars indicate t statistic values. Volumes of interest are shown on the T1-weighted template created from the average of all 16 participants with frontotemporal atrophy in the MNI space. Abbreviation: MNI, Montreal Neurological Institute.

References

    1. Chow TW, Hynan LS, Lipton AM. MMSE scores decline at a greater rate in frontotemporal lobar degeneration than in AD. Dement Geriatr Cogn Disord. 2006;22(3):194–199.
    1. Caycedo AM, Miller B, Kramer J, Rascovsky K. Early features in frontotemporal dementia. Curr Alzheimer Res. 2009;6(4):337–340.
    1. Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–1014.
    1. Kaye ED, Petrovic-Poljakc A, Verhoeff NPLG, Freedman M. Frontotemporal dementia and pharmacologic interventions. J Neuropsychiatry Clin Neurosci. 2010;22(1):19–29.
    1. Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–324.
    1. Kuszczyk M, Slomka M, Antkiewicz-Michaluk L, Salinska E, Lazarewicz JW. 1-Methyl-1,2,3,4-tetrahydroisoquinoline and established uncompetitive NMDA receptor antagonists induce tolerance to excito-toxicity. Pharmacol Rep. 2010;62(6):1041–1050.
    1. Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets. 2007;8(5):621–632.
    1. Nakamura T, Lipton SA. Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxid Redox Signal. 2008;10(1):87–101.
    1. Rammes G, Hasenjager A, Sroka-Saidi K, Deussing J, Parsons CG. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synapto-toxic effects of beta-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology. 2011;60(6):982–990.
    1. Onogi H, Ishigaki S, Nakagawasai O, et al. Influence of memantine on brain monoaminergic neurotransmission parameters in mice: Neurochemical and behavioral study. Biol Pharm Bull. 2009;32(5):850–855.
    1. Wilcock G, Mobius HJ, Stoffler A. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500) Int Clin Psychopharmacol. 2002;17(6):297–305.
    1. Orgogozo JM, Rigaud AS, Stoffler A, Mobius HJ, Forette F. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300) Stroke. 2002;33(7):1834–1839.
    1. Huntley GW, Vickers JC, Janssen W, Brose N, Heinemann SF, Morrison JH. Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in sensory-motor and visual cortices of monkey and human. J Neurosci. 1994;14(6):3603–3619.
    1. Bohnen NI, Koeppe RA, Minoshima S, et al. Cerebral glucose metabolic features of parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52(6):848–855.
    1. Herholz K. Cerebral glucose metabolism in preclinical and prodromal Alzheimer’s disease. Expert Rev Neurother. 2010;10(11):1667–1673.
    1. Herholz K, Perani D, Salmon E, et al. Comparability of FDG PET studies in probable Alzheimer’s disease. J Nucl Med. 1993;34(9):1460–1466.
    1. Jagust WJ, Bandy D, Chen K, et al. The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement. 2010;6(3):221–229.
    1. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry. 2002;159(5):738–745.
    1. De Leon MJ, Ferris SH, George AE, et al. Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab. 1983;3(3):391–394.
    1. Mosconi L, Mistur R, Switalski R, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36(5):811–822.
    1. Haxby JV, Grady CL, Koss E, et al. Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol. 1990;47(7):753–760.
    1. Villain N, Fouquet M, Baron JC, et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain. 2010;133(11):3301–3314.
    1. Chen K, Langbaum JB, Fleisher AS, et al. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of- interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage. 2010;51(2):654–664.
    1. Salmon E, Kerrouche N, Herholz K, et al. Decomposition of metabolic brain clusters in the frontal variant of frontotemporal dementia. Neuroimage. 2006;30(3):871–878.
    1. Franceschi M, Anchisi D, Pelati O, et al. Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann Neurol. 2005;57(2):216–225.
    1. Pasquier F, Fukui T, Sarazin M, et al. Laboratory investigations and treatment in frontotemporal dementia. Ann Neurol. 2003;54(S5):S32–35.
    1. Zhou J, Greicius M, Gennatas E, et al. Divergent network connectivity changes in behavioral variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133(Pt 5):1352–1367.
    1. Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–1554.
    1. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–2414.
    1. Winblad B, Poritis N. Memantine in severe dementia: Results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine) Int J Geriatr Psychiatry. 1999;14(2):135–146.
    1. Lundbeck. Ebixa® (memantine) Product Monograph. 2002
    1. Kertesz A, Davidson W, Fox H. Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci. 1997;24(1):29–36.
    1. Shigenobu K, Ikeda M, Fukuhara R, et al. The Stereotypy Rating Inventory for frontotemporal lobar degeneration. Psychiatry Res. 2002;110(2):175–187.
    1. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11):1621–1626.
    1. Martinez-Martin P, Gil-Nagel A, Gracia LM, Gomez JB, Martinez-Sarries J, Bermejo F. Unified Parkinson’s disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov Disord. 1994;9(1):76–83.
    1. Graff-Guerrero A, De la Fuente-Sandoval C, Camarena B, et al. Frontal and limbic metabolic differences in subjects selected according to genetic variation of the SLC6A4 gene polymorphism. Neuroimage. 2005;25(4):1197–1204.
    1. Chow TW, Cummings JL. Frontal-subcortical circuits. In: Miller BL, Cummings JL, editors. The Human Frontal Lobes: Functions and Disorders. 2nd ed. New York: Guilford Press; 2006.
    1. Buchsbaum MS, Haznedar M, Newmark RE, et al. FDG-PET and MRI imaging of the effects of sertindole and haloperidol in the prefrontal lobe in schizophrenia. Schizophr Res. 2009;114:1–3. 161–171.
    1. Mega MS, Dinov ID, Porter V, et al. Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose F18 positron emission tomographic study. Arch Neurol. 2005;62(5):721–728.
    1. Sultzer DL, Melrose RJ, Harwood DG, Campa O, Mandelkern MA. Effect of memantine treatment on regional cortical metabolism in Alzheimer’s disease. Am J Geriatr Psychiatry. 2010;18(7):606–614.
    1. Stuss DT, Murphy KJ, Binns MA, Alexander MP. Staying on the job: The frontal lobes control individual performance variability. Brain. 2003;126(Pt 11):2363–2380.
    1. Gauthier S, Wirth Y, Möbius HJ. Effects of memantine on behavioural symptoms in Alzheimer’s disease patients: an analysis of the Neuropsychiatric Inventory (NPI) data of two randomised, controlled studies. Int J Geriatr Psychiatry. 2005;20(5):459–464.
    1. Cummings JL, Schneider E, Tariot PN, Graham SM. Memantine MEMMD- 02 Study Group. Behavioral effects of memantine in Alzheimer disease patients receiving donepezil treatment. Neurology. 2006;67(1):57–63.
    1. Diehl-Schmid J, Förstl H, Perneczky R, Pohl C, Kurz A. A 6-month, open-label study of memantine in patients with frontotemporal dementia. Int J Geriatr Psychiatry. 2008;23(7):754–759.
    1. Scharre JW, Knick JA, Davis RA, Theado-Miller N. Memantine in frontotemporal dementia. Neurology. 2005;64:A99.
    1. Swanberg MM. Memantine for behavioral disturbances in frontotemporal dementia: a case series. Alzheimer Dis Assoc Disord. 2007;21(2):164–166.
    1. Boxer AL, Lipton AM, Womack K, et al. An open-label study of memantine treatment in 3 subtypes of frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord. 2009;23(3):211–217.
    1. Vercelletto M, Boutoleau-Bretonniere C, Volteau C, et al. Memantine in behavioral variant frontotemporal dementia: negative results. J Alzheimers Dis. 2011;23(4):749–759.
    1. Diehl-Schmid J, Grimmer T, Drzezga A, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18FFDG- PET-study. Neurobiol Aging. 2007;28(1):42–50.
    1. Knopman DS, Jack CR, Jr, Kramer JH, et al. Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year. Neurology. 2009;72(21):1843–1849.
    1. Aisen PS, Petersen RC, Donohue MC, et al. Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimers Dement. 2010;6(3):239–246.

Source: PubMed

Подписаться