Development and application of an automated algorithm to identify a window of consecutive days of accelerometer wear for large-scale studies

Eileen Rillamas-Sun, David M Buchner, Chongzhi Di, Kelly R Evenson, Andrea Z LaCroix, Eileen Rillamas-Sun, David M Buchner, Chongzhi Di, Kelly R Evenson, Andrea Z LaCroix

Abstract

Background: Some accelerometer studies ask participants to document in a daily log when the device was worn. These logs are used to inform the window of consecutive days to extract from the accelerometer for analysis. Logs can be missing or inaccurate, which can introduce bias in the data. To mitigate this bias, we developed a simple computer algorithm that used data within the accelerometer to identify the window of consecutive wear days. To evaluate the algorithm's performance, we compared how well it agreed to the window of days identified by visual inspection and participant logs.

Findings: Participants were older women (mean age 79 years) in a cohort study that aimed to examine the relationship of objective physical activity on cardiovascular health. The study protocol requested that participants wear an accelerometer 24 h per day over nine calendar days (to capture seven consecutive wear days) and to complete daily logs. A stratified sample with (n = 75) and without (n = 100) participant logs were selected. The Objective Physical Activity and Cardiovascular Health (OPACH) algorithm was applied to the accelerometer data to identify a window of up to seven consecutive wear days. Participant logs documented dates the device was first put on, worn, and removed. Using pre-established guidelines, two independent raters visually reviewed the accelerometer data and characterized the dates representing up to seven consecutive days of 24-h wear. Average agreement level between the two raters was 90%. The percent agreement was compared between the three methods. The OPACH algorithm and visual inspection had 83% agreement in identifying a window with the same total number of days, if one or more shifts in calendar dates were allowed. For visual inspection vs. logs and algorithm vs. logs, this agreement was 81 and 74%, respectively.

Conclusion: The OPACH algorithm can be efficiently and readily applied in large-scale accelerometer studies for the identification of a window of consecutive days of accelerometer wear. This algorithm was comparable to visual inspection and participant logs and might provide a quicker and more cost-effective alternative to selecting which data to extract from the accelerometer for analysis.

Trial registration: clinicaltrials.gov identifier: NCT00000611.

Figures

Figure 1
Figure 1
Example of an annotated accelerometer signal used during visual inspection. Each box represents a day, with time on the x-axis and total counts on the y-axis. Day 5 would be considered the first day and day 11 would be considered the last day of the wear window, for a maximum 7 consecutive days of wear. Day 6 would best represent the first day of wear documented in the log.

References

    1. Murphy SL. Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct. Prev Med. 2009;48:108–114. doi: 10.1016/j.ypmed.2008.12.001.
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(11 Suppl):S531–S543. doi: 10.1249/01.mss.0000185657.86065.98.
    1. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43:357–364. doi: 10.1249/MSS.0b013e3181ed61a3.
    1. Choi L, Ward SC, Schnelle JF, Buchowski MS. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44:2009–2016. doi: 10.1249/MSS.0b013e318258cb36.
    1. Lee IM, Shiroma EJ. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br J Sports Med. 2014;48:197–201. doi: 10.1136/bjsports-2013-093154.
    1. Alhassan S, Sirard JR, Spencer TR, Varady A, Robinson TN. Estimating physical activity from incomplete accelerometer data in field studies. J Phys Act Health. 2008;5(Suppl 1):S112–S125.
    1. King WC, Li J, Leishear K, Mitchell JE, Belle SH. Determining activity monitor wear time: an influential decision rule. J Phys Act Health. 2011;8:566–580.
    1. Masse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37(11 Suppl):S544–S554. doi: 10.1249/01.mss.0000185674.09066.8a.
    1. Peeters G, van Gellecum Y, Ryde G, Farias NA, Brown WJ. Is the pain of activity log-books worth the gain in precision when distinguishing wear and non-wear time for tri-axial accelerometers? J Sci Med Sport. 2013;16:515–519. doi: 10.1016/j.jsams.2012.12.002.
    1. Meyer AM, Evenson KR, Morimoto L, Siscovick D, White E. Test–retest reliability of the Women’s Health Initiative physical activity questionnaire. Med Sci Sports Exerc. 2009;41:530–538. doi: 10.1249/MSS.0b013e31818ace55.
    1. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR, Jr, Montoye HJ, Sallis JF, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25:71–80. doi: 10.1249/00005768-199301000-00011.
    1. Hutto B, Howard VJ, Blair SN, Colabianchi N, Vena JE, Rhodes D, et al. Identifying accelerometer nonwear and wear time in older adults. Int J Behav Nutr Phys Act. 2013;10:120. doi: 10.1186/1479-5868-10-120.
    1. Mailey EL, Gothe NP, Wojcicki TR, Szabo AN, Olson EA, Mullen SP, et al. Influence of allowable interruption period on estimates of accelerometer wear time and sedentary time in older adults. J Aging Phys Act. 2014;22:255–260. doi: 10.1123/JAPA.2013-0021.
    1. Winkler EA, Gardiner PA, Clark BK, Matthews CE, Owen N, Healy GN. Identifying sedentary time using automated estimates of accelerometer wear time. Br J Sports Med. 2012;46:436–442. doi: 10.1136/bjsm.2010.079699.

Source: PubMed

Подписаться