The zinc-dependent protease activity of the botulinum neurotoxins

Frank J Lebeda, Regina Z Cer, Uma Mudunuri, Robert Stephens, Bal Ram Singh, Michael Adler, Frank J Lebeda, Regina Z Cer, Uma Mudunuri, Robert Stephens, Bal Ram Singh, Michael Adler

Abstract

The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities of these neurotoxins, and briefly describes inhibitors, activators and factors underlying persistence of toxin action. Some of the structural, enzymatic and inhibitor data that are discussed here are available at the botulinum neurotoxin resource, BotDB (http://botdb.abcc.ncifcrf.gov).

Keywords: Km; catalysis; energy; kcat; superactivation.

Figures

Figure 1
Figure 1
Representation of the four structural domains of the BoNT/B holotoxin (PDB ID 1EPW) [16]. The “Structures” section of the BotDB presently contains 90 3D protein structures found in the Protein Data Bank (PDB) [5]. From left to right, the order of these domains is: HCC, (red) HCN, (yellow-orange) HN (green), LC (blue).
Figure 2
Figure 2
Values of Km and kcat obtained from cell-free assays depend on the forms of the toxic moiety and the substrate molecule used. The LC of BoNT/A (LC-A) and full length SNAP-25 (residues 1-206) are associated with values of Km (closed symbols) that are less than those associated with the LC-A and a 17-mer of SNAP-25 (residues 146-206; open symbols). Larger values for kcat tended to be associated with a 17-mer of SNAP-25 and the holotoxin (open triangles). Open circles: LC-A used with 17-mer SNAP-25 fragment; closed circles: LC-A used with full-length SNAP-25 (1-206) containing His-6 tag. Closed diamond: data associated with the largest kcat/Km ratio in this data set (see text). Dashed vertical line: arbitrarily positioned below Km = 100 mM to visually separate high and low values of Km. Data collected from [48,49,50] and references therein.
Figure 3
Figure 3
Example list of compounds in the BotDBI that have been evaluated as blockers of BoNT/A action.
Figure 4
Figure 4
Output of the IC50-to-Ki converter tool at the BotDB website that shows the different possible results based on whether the inhibitor mechanism is competitive, uncompetitive or noncompetitive.

References

    1. Gomis-Ruth F.X. Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 2003;24:157–202. doi: 10.1385/MB:24:2:157.
    1. Rawlings N.D., Barrett A.J., Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2009;38:D227–D233.
    1. Singh B.R., Li B., Read D. Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon. 1995;33:1541–1547. doi: 10.1016/0041-0101(95)00094-1.
    1. Rabasseda X., Blasi J., Marsal J., Dunant Y., Casanova A., Bizzini B. Tetanus and botulinum toxins block the release of acetylcholine from slices of rat striatum and from the isolated electric organ of Torpedo at different concentrations. Toxicon. 1988;26:329–336.
    1. Habermann E., Dreyer F., Bigalke H. Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn Schmiedebergs Arch. Pharmacol. 1980;311:33–40. doi: 10.1007/BF00500299.
    1. Washbourne P., Pellizzari R., Rossetto O., Bortoletto N., Tugnoli V., De Grandis D., Eleopra R., Montecucco C. On the action of botulinum neurotoxins A and E at cholinergic terminals. J. Physiol. Paris. 1998;92:135–139. doi: 10.1016/S0928-4257(98)80151-4.
    1. Arnon S.S., Schechter R., Inglesby T.V., Henderson D.A., Bartlett J.G., Ascher M.S., Eitzen E., Fine A.D., Hauer J., Layton M., Lillibridge S., Osterholm M.T., O'Toole T., Parker G., Perl T.M., Russell P.K., Swerdlow D.L., Tonat K. Botulinum toxin as a biological weapon: medical and public health management. J. Amer. Med. Assoc. 2001;285:1059–1070.
    1. Mejia N.I., Vuong K.D., Jankovic J. Long-term botulinum toxin efficacy, safety, and immunogenicity. Mov. Disord. 2005;20:592–597. doi: 10.1002/mds.20376.
    1. Sheffield J.K., Jankovic J. Botulinum toxin in the treatment of tremors, dystonias, sialorrhea and other symptoms associated with Parkinson's disease. Expert Rev. Neurother. 2007;7:637–647. doi: 10.1586/14737175.7.6.637.
    1. Lebeda F.J., Cer R.Z., Stephens R., Mudunuri U. Temporal characteristics of botulinum neurotoxin therapy. Expert Rev. Neurother. 2010;10:93–103.
    1. Montal M. Botulinum Neurotoxin: A Marvel of Protein Design. Annu. Rev. Biochem. 2010;79 [Epub ahead of print]
    1. Schiavo G., Matteoli M., Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000;80:717–766.
    1. Montecucco C., Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 1995;28:423–472. doi: 10.1017/S0033583500003292.
    1. Simpson L.L. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol. 2004;44:167–193.
    1. Sharma S.K., Basavanna U., Shukla H.D. Protein domain analysis of C. botulinum type A neurotoxin and its relationship with other botulinum serotypes. Toxins. 2010;2:1–9.
    1. Swaminathan S., Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 2000;7:693–699. doi: 10.1038/78005.
    1. Lacy D.B., Tepp W., Cohen A.C., DasGupta B.R., Stevens R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998;5:898–902.
    1. Schiavo G., Rossetto O., Santucci A., DasGupta B.R., Montecucco C. Botulinum neurotoxins are zinc proteins. J. Biol. Chem. 1992;267:23479–23483.
    1. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 1992;11:3577–3583.
    1. Sigrist C.J., Cerutti L., de Castro E., Langendijk-Genevaux P.S., Bulliard V., Bairoch A., Hulo N. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 2009;38:D161–D166.
    1. Tonello F., Montecucco C. The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Mol. Aspects Med. 2009;30:431–438. doi: 10.1016/j.mam.2009.07.006.
    1. Sathyamoorthy V., DasGupta B.R. Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E. J. Biol. Chem. 1985;260:10461–10466.
    1. Lomneth R., Gimenez J., Martin T.F., DasGupta B.R. Calcium-dependent release of norepinephrine from permeabilized PC12 cells is inhibited by approximately 48 and approximately 112 kDa fragments of botulinum neurotoxin type E. Neuropharmacology. 1993;32:285–259. doi: 10.1016/0028-3908(93)90113-H.
    1. Brunger A.T., Breidenbach M.A., Jin R., Fischer A., Santos J.S., Montal M. Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog. 2007;3:1191–1194.
    1. Rossetto O., Montecucco C. Peculiar binding of botulinum neurotoxins. ACS Chem. Biol. 2007;2:96–98. doi: 10.1021/cb700020v.
    1. Lebeda F.J., Singh B.R. Membrane channel activity and translocation of tetanus and botulinum neurotoxins. J. Toxicol.-Toxin Rev. 1999;18:45–76.
    1. Simpson L.L. Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J. Pharmacol. Exp. Ther. 1980;212:16–21.
    1. Lebeda F.J., Adler M., Erickson K., Chushak Y. Onset dynamics of type A botulinum neurotoxin-induced paralysis. J. Pharmacokinet. Pharmacodyn. 2008;35:251–267. doi: 10.1007/s10928-008-9087-3.
    1. Foran P., Shone C.C., Dolly J.O. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry. 1994;33:15365–15374.
    1. Osen-Sand A., Staple J.K., Naldi E., Schiavo G., Rossetto O., Petitpierre S., Malgaroli A., Montecucco C., Catsicas S. Common and distinct fusion proteins in axonal growth and transmitter release. J. Comp. Neurol. 1996;367:222–234. doi: 10.1002/(SICI)1096-9861(19960401)367:2<222::AID-CNE5>;2-7.
    1. Williamson L.C., Halpern J.L., Montecucco C., Brown J.E., Neale E.A. Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J. Biol. Chem. 1996;271:7694–7699.
    1. Foran P., Lawrence G.W., Shone C.C., Foster K.A., Dolly J.O. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry. 1996;35:2630–2636.
    1. Koshland D.E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc. Natl. Acad. Sci. USA. 1958;44:98–104. doi: 10.1073/pnas.44.2.98.
    1. Gaudet P., Lane L., Fey P., Bridge A., Poux S., Auchincloss A., Axelsen K., Braconi Quintaje S., Boutet E., Brown P., Coudert E., Datta R.S., de Lima W.C., de Oliveira Lima T., Duvaud S., Farriol-Mathis N., Ferro Rojas S., Feuermann M., Gateau A., Hinz U., Hulo C., James J., Jimenez S., Jungo F., Keller G., Lemercier P., Lieberherr D., Moinat M., Nikolskaya A., Pedruzzi I., Rivoire C., Roechert B., Schneider M., Stanley E., Tognolli M., Sjolander K., Bougueleret L., Chisholm R.L., Bairoch A. Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase. Database (Oxford) 2009;2009:ap016.
    1. Fairweather N.F., Lyness V.A. The complete nucleotide sequence of tetanus toxin. Nucleic Acids Res. 1986;14:7809–7812.
    1. Jongeneel C.V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989;242:211–214.
    1. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 1992;11:3577–3583.
    1. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B.R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–835.
    1. Adler M., Dinterman R.E., Wannemacher R.W. Protection by the heavy metal chelator N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN) against the lethal action of botulinum neurotoxin A and B. Toxicon. 1997;35:1089–1100. doi: 10.1016/S0041-0101(96)00215-2.
    1. Hooper N.M. Families of zinc metalloproteases. FEBS Lett. 1994;354:1–6.
    1. Lebeda F.J., Olson M.A. Predictions of secondary structure and solvent accessibility of the light chain of the clostridial neurotoxins. J. Nat. Toxins. 1998;7:227–238.
    1. Li Y., Foran P., Fairweather N.F., de Paiva A., Weller U., Dougan G., Dolly J.O. A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry. 1994;33:7014–7020.
    1. Schmidt J.J., Bostian K.A. Proteolysis of synthetic peptides by type A botulinum neurotoxin. J. Protein Chem. 1995;14:703–708. doi: 10.1007/BF01886909.
    1. Olson M.A., Armendinger T.L. Free-energy contributions to complex formation between botulinum neurotoxin type B and synaptobrevin fragment. Protein Eng. 2002;15:739–743. doi: 10.1093/protein/15.9.739.
    1. Lebeda F.J., Olson M.A. Secondary structural predictions for the clostridial neurotoxins. Proteins. 1994;20:293–300. doi: 10.1002/prot.340200402.
    1. Breidenbach M.A., Brunger A.T. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature. 2004;432:925–929. doi: 10.1038/nature03123.
    1. Pang Y.P., Vummenthala A., Mishra R.K., Park J.G., Wang S., Davis J., Millard C.B., Schmidt J.J. Potent new small-molecule inhibitor of botulinum neurotoxin serotype A endopeptidase developed by synthesis-based computer-aided molecular design. PLoS One. 2009;4:e7730.
    1. Sukonpan C., Oost T., Goodnough M., Tepp W., Johnson E.A., Rich D.H. Synthesis of substrates and inhibitors of botulinum neurotoxin type A metalloprotease. J. Pept. Res. 2004;63:181–193.
    1. Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Sudhof T.C., Jahn R., Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol.Chem. 1994;269:1617–1620.
    1. Binz T., Bade S., Rummel A., Kollewe A., Alves J. Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry. 2002;41:1717–1723.
    1. Koshland D.E. The Application and Usefulness of the Ratio kcat/KM. Bioorg. Chem. 2002;30:211–213. doi: 10.1006/bioo.2002.1246.
    1. Fu Z., Chen S., Baldwin M.R., Boldt G.E., Crawford A., Janda K.D., Barbieri J.T., Kim J.J. Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate. Biochemistry. 2006;45:8903–8911.
    1. Fersht A. Structure and Mechanism in Protein Science. W.H. Freeman and Company; New York, NY, USA: 1999.
    1. Vaidyanathan V.V., Yoshino K., Jahnz M., Dorries C., Bade S., Nauenburg S., Niemann H., Binz T. Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem. 1999;72:327–337.
    1. Sanders D., Habermann E. Evidence for a link between specific proteolysis and inhibition of [3H]-noradrenaline release by the light chain of tetanus toxin. Naunyn Schmiedebergs Arch. Pharmacol. 1992;346:358–361.
    1. Adler M., Nicholson J.D., Starks D.F., Kane C.T., Cornille F., Hackley B.E., Jr. Evaluation of phosphoramidon and three synthetic phosphonates for inhibition of botulinum neurotoxin B catalytic activity. J. Appl. Toxicol. 1999;19(Suppl. 1):S5–S11. doi: 10.1002/(SICI)1099-1263(199912)19:1+<S5::AID-JAT606>;2-M.
    1. Deshpande S.S., Sheridan R.E., Adler M. A study of zinc-dependent metalloendopeptidase inhibitors as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon. 1995;33:551–557. doi: 10.1016/0041-0101(94)00188-E.
    1. Adler M., Deshpande S.S., Sheridan R.E., Lebeda F.J. Evaluation of captopril and other potentially therapeutic compounds in antagonizing botulinum toxin-induced muscle paralysis. In: Jankovic J., Hallett M., editors. Therapy with Botulinum Toxin. Marcel Dekker, Inc.; New York, NY, USA: 1994. pp. 63–70.
    1. Bakry N., Kamata Y., Simpson L.L. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J. Pharmacol. Exp. Ther. 1991;258:830–836.
    1. Simpson L.L. The interaction between aminoquinolines and presynaptically acting neurotoxins. J. Pharmacol. Exp. Ther. 1982;222:43–48.
    1. Deshpande S.S., Sheridan R.E., Adler M. Efficacy of certain quinolines as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon. 1997;35:433–445. doi: 10.1016/S0041-0101(96)00147-X.
    1. Simpson L.L. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J. Pharmacol. Exp. Ther. 1983;225:546–552.
    1. Simpson L.L., Coffield J.A., Bakry N. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J. Pharmacol. Exp. Ther. 1994;269:256–262.
    1. Simpson L.L. A preclinical evaluation of aminopyridines as putative therapeutic agents in the treatment of botulism. Infect. Immun. 1986;52:858–862.
    1. Simpson L.L. Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins. J. Pharmacol. Exp. Ther. 1988;245:867–872.
    1. Adler M., Scovill J., Parker G., Lebeda F.J., Piotrowski J., Deshpande S.S. Antagonism of botulinum toxin-induced muscle weakness by 3,4-diaminopyridine in rat phrenic nerve-hemidiaphragm preparations. Toxicon. 1995;33:527–537.
    1. Simpson L.L. Pharmacological studies on the subcellular site of action of botulinum toxin type A. J. Pharmacol. Exp. Ther. 1978;206:661–669.
    1. Shone C.C., Quinn C.P., Wait R., Hallis B., Fooks S.G., Hambleton P. Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur. J. Biochem. 1993;217:965–971. doi: 10.1111/j.1432-1033.1993.tb18327.x.
    1. Yamasaki S., Baumeister A., Binz T., Blasi J., Link E., Cornille F., Roques B., Fykse E.M., Sudhof T.C., Jahn R., et al. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem. 1994;269:12764–12772.
    1. Cornille F., Goudreau N., Ficheux D., Niemann H., Roques B.P. Solid-phase synthesis, conformational analysis and in vitro cleavage of synthetic human synaptobrevin II 1-93 by tetanus toxin L chain. Eur. J. Biochem. 1994;222:173–181. doi: 10.1111/j.1432-1033.1994.tb18855.x.
    1. Shone C.C., Roberts A.K. Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur. J. Biochem. 1994;225:263–270. doi: 10.1111/j.1432-1033.1994.00263.x.
    1. Cornille F., Deloye F., Fournie-Zaluski M.C., Roques B.P., Poulain B. Inhibition of neurotransmitter release by synthetic proline-rich peptides shows that the N-terminal domain of vesicle-associated membrane protein/synaptobrevin is critical for neuro-exocytosis. J. Biol. Chem. 1995;270:16826–16832.
    1. Zuniga J.E., Schmidt J.J., Fenn T., Burnett J.C., Arac D., Gussio R., Stafford R.G., Badie S.S., Bavari S., Brunger A.T. A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure. 2008;16:1588–1597.
    1. Eswaramoorthy S., Kumaran D., Swaminathan S. A novel mechanism for Clostridium botulinum neurotoxin inhibition. Biochemistry. 2002;41:9795–9802. doi: 10.1021/bi020060c.
    1. Martin L., Cornille F., Turcaud S., Meudal H., Roques B.P., Fournie-Zaluski M.C. Metallopeptidase inhibitors of tetanus toxin: A combinatorial approach. J. Med. Chem. 1999;42:515–525.
    1. Boldt G.E., Eubanks L.M., Janda K.D. Identification of a botulinum neurotoxin A protease inhibitor displaying efficacy in a cellular model. Chem. Commun. (camb) 2006:3063–3065.
    1. Burnett J.C., Opsenica D., Sriraghavan K., Panchal R.G., Ruthel G., Hermone A.R., Nguyen T.L., Kenny T.A., Lane D.J., McGrath C.F., Schmidt J.J., Vennerstrom J.L., Gussio R., Solaja B.A., Bavari S. A refined pharmacophore identifies potent 4-amino-7-chloroquinoline-based inhibitors of the botulinum neurotoxin serotype A metalloprotease. J. Med. Chem. 2007;50:2127–2136.
    1. Zuniga J.E., Schmidt J.J., Fenn T., Burnett J.C., Arac D., Gussio R., Stafford R.G., Badie S.S., Bavari S., Brunger A.T. A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure. 2008;16:1588–1597. doi: 10.1016/j.str.2008.07.011.
    1. Cer R.Z., Mudunuri U., Stephens R., Lebeda F.J. IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res. 2009;37:W441–W445.
    1. Capkova K., Hixon M.S., Pellett S., Barbieri J.T., Johnson E.A., Janda K.D. Benzylidene cyclopentenediones: First irreversible inhibitors against botulinum neurotoxin A's zinc endopeptidase. Bioorg. Med. Chem. Lett. 2010;20:206–208.
    1. Silhar P., Capkova K., Salzameda N.T., Barbieri J.T., Hixon M.S., Janda K.D. Botulinum neurotoxin A protease: discovery of natural product exosite inhibitors. J. Am. Chem. Soc. 2010;132:2868–2869.
    1. Eubanks L.M., Hixon M.S., Jin W., Hong S., Clancy C.M., Tepp W.H., Baldwin M.R., Malizio C.J., Goodnough M.C., Barbieri J.T., Johnson E.A., Boger D.L., Dickerson T.J., Janda K.D. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc. Natl. Acad. Sci. USA. 2007;104:2602–2607.
    1. Schmidt J.J., Bostian K.A. Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin. J. Protein Chem. 1997;16:19–26. doi: 10.1023/A:1026386710428.
    1. Costa S.A., Tzanov T., Ana Filipa Carneiro A.F., Paar A., Gubitz G.M., Cavaco-Paulo A. Studies of stabilization of native catalase using additives. Enz. Microb. Technol. 2002;30:387–391. doi: 10.1016/S0141-0229(01)00505-1.
    1. McAllister L.A., Hixon M.S., Kennedy J.P., Dickerson T.J., Janda K.D. Superactivation of the Botulinum Neurotoxin Serotype A Light Chain Metalloprotease: A New Wrinkle in Botulinum Neurotoxin. J. Am. Chem. Soc. 2006;128:4176–4177.
    1. Botts J., Morales M. Analytical description of the effects of modifiers and of enzyme multivalency upon the steady state catalyzed reaction rate. Trans. Faraday Soc. 1953;49:696–707.
    1. Cornish-Bowden A. Fundamentals of Enzyme Kinetics. Butterworths; London, UK: 1979.
    1. Verderio C., Rossetto O., Grumelli C., Frassoni C., Montecucco C., Matteoli M. Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Rep. 2006;7:995–999. doi: 10.1038/sj.embor.7400796.
    1. Marcus S.M. Reflections on the care of a patient severely poisoned by 'rogue' botulinum toxin and rendered paralysed for a protracted hospital stay. Botulinum J. 2009;1:318–339.
    1. Adler M., Keller J.E., Sheridan R.E., Deshpande S.S. Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. Toxicon. 2001;39:233–243.
    1. Keller J.E., Neale E.A., Oyler G., Adler M. Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett. 1999;456:137–142. doi: 10.1016/S0014-5793(99)00948-5.
    1. Cai S., Sarkar H.K., Singh B.R. Enhancement of the endopeptidase activity of botulinum neurotoxin by its associated proteins and dithiothreitol. Biochemistry. 1999;38:6903–6910.
    1. Takita T., Aono T., Sakurama H., Itoh T., Wada T., Minoda M., Yasukawa K., Inouye K. Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability. Biochim. Biophys. Acta. 2008;1784:481–488.
    1. Schulte-Baukloh H., Zurawski T.H., Knispel H.H., Miller K., Haferkamp A., Dolly J.O. Persistence of the synaptosomal-associated protein-25 cleavage product after intradetrusor botulinum toxin A injections in patients with myelomeningocele showing an inadequate response to treatment. BJU Int. 2007;100:1075–1080.
    1. Meunier F.A., Lisk G., Sesardic D., Dolly J.O. Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol. Cell. Neurosci. 2003;22:454–466.
    1. O'Sullivan G.A., Mohammed N., Foran P.G., Lawrence G.W., Dolly J.O. Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. Identification of the minimal essential C-terminal residues. J. Biol. Chem. 1999;274:36897–36904.
    1. Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995;14:2317–2325.
    1. Poulain B., Popoff M.R., Molgó J. How do the Botulinum Neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. Botulinum J. 2008;1:14–87. doi: 10.1504/TBJ.2008.018951.
    1. Fernandez-Salas E., Steward L.E., Ho H., Garay P.E., Sun S.W., Gilmore M.A., Ordas J.V., Wang J., Francis J., Aoki K.R. Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc. Natl. Acad. Sci. USA. 2004;101:3208–3213.
    1. Ferrer-Montiel A.V., Canaves J.M., DasGupta B.R., Wilson M.C., Montal M. Tyrosine phosphorylation modulates the activity of clostridial neurotoxins. J. Biol. Chem. 1996;271:18322–18325.
    1. Ibanez C., Blanes-Mira C., Fernandez-Ballester G., Planells-Cases R., Ferrer-Montiel A. Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. FEBS Lett. 2004;578:121–127. doi: 10.1016/j.febslet.2004.10.084.
    1. Ellis R.J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 2001;26:597–604.

Source: PubMed

Подписаться