Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection

Rafal Butowt, Christopher S von Bartheld, Rafal Butowt, Christopher S von Bartheld

Abstract

In recent months it has emerged that the novel coronavirus-responsible for the COVID-19 pandemic-causes reduction of smell and taste in a large fraction of patients. The chemosensory deficits are often the earliest, and sometimes the only signs in otherwise asymptomatic carriers of the SARS-CoV-2 virus. The reasons for the surprisingly early and specific chemosensory dysfunction in COVID-19 are now beginning to be elucidated. In this hypothesis review, we discuss implications of the recent finding that the prevalence of smell and taste dysfunction in COVID-19 patients differs between populations, possibly because of differences in the spike protein of different virus strains or because of differences in the host proteins that enable virus entry, thus modifying infectivity. We review recent progress in defining underlying cellular and molecular mechanisms of the virus-induced anosmia, with a focus on the emerging crucial role of sustentacular cells in the olfactory epithelium. We critically examine the current evidence whether and how the SARS-CoV-2 virus can follow a route from the olfactory epithelium in the nose to the brain to achieve brain infection, and we discuss the prospects for using the smell and taste dysfunctions seen in COVID-19 as an early and rapid diagnostic screening tool.

Keywords: ACE2; COVID-19; SARS-CoV-2; anosmia; brain infection; diagnosis; hyposmia; olfactory epithelium; prevalence; smell loss; taste.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1.
Figure 1.
Prevalence of chemosensory deficits in COVID-19 patients. (A) World map based on 68 studies with a total of 30,264 patients (updated version, original from: von Bartheld and others 2020). (B) Prevalence of chemosensory dysfunction in COVID-19 patients in Western countries and East Asia according to a recent meta-analysis (von Bartheld and others 2020). Error bars are 95% confidence intervals. Data are based on a total of 22,011 Caucasian and 8253 East Asian patients with COVID-19 from n = 61 cohorts and n = 12 cohorts, respectively.
Figure 2.
Figure 2.
The time course and frequency of chemosensory dysfunctions in COVID-19 patients according to a study from Italy (Vaira and others 2020a). Note that dysfunction of smell peaked slightly earlier than dysfunction of taste, and most deficits resolved within 8 to 10 days after the peak.
Figure 3.
Figure 3.
Schematic of the olfactory pathway to the brain with four different scenarios how the SARS-CoV-2 virus may cause anosmia or hyposmia. (A) Normal pathway: odorant molecules bind to the olfactory receptor neuron (ORN), the ORN transmits the smell sensation through the cribriform plate (bone) to the mitral cell (MC) in the olfactory bulb of the brain. Olfactory epithelium also contains support cells (sustentacular cells, SuC) and stem cells (SC) that can regenerate SuCs and ORNs. (B) Odors may not reach the ORNs, because of nasal obstruction/congestion by increased mucus. (C) The transmission of odor sensation may be blocked because of damage and/or death of ORNs. (D) The sensation of smell may be compromised because the virus affects neurons in the brain. (E) The transmission of odor sensation may be compromised, because the SuC (which assists the ORN with odor processing) is damaged by the virus.
Figure 4.
Figure 4.
Entry of the SARS-CoV-2 virus in the olfactory epithelium and the virus’ predicted effects that may explain the anosmia in COVID-19 patients. Coronavirus enters (pink arrows) and accumulates in the sustentacular cells (SuC) which abundantly express ACE2 and TMPRSS2 proteins, the entry proteins of the virus. SuCs normally partake in the processing of the odorants by endocytosing the odorant-binding protein complex (green-black symbol), by detoxifying, by maintaining the cilia of mature olfactory receptor neurons (mORN), and by maintaining epithelial integrity. Olfactory sensation is impaired when these essential SuC functions are disrupted. It is unknown whether the virus may transfer from SuC to mature olfactory receptor neurons (mORN) which lack ACE2 and TMPRSS2 proteins (Table 2), but have axons extending to the brain. Both the SuC and mORN can be replaced by stem cells (SC—blue arrows), although SuC replacement is much faster than replacement of mORN where SC first generates immature ORN (iORN) whose axons have to grow through the bone to the brain.
Figure 5.
Figure 5.
Time course of cellular events that may cause loss of smell and its recovery in COVID-19 patients. Day 0 = day of infection. Symbols and abbreviations are the same as explained in Figures 3 and 4. SuC, sustentacular cell; ORN, olfactory receptor neuron; SC, stem cell.
Figure 6.
Figure 6.
Four potential routes of SARS-CoV-2 virus from the nose to the brain through the cribriform plate. (A) Olfactory circuits. (B) Nervus terminalis. (C) Cerebrospinal fluid. (D) Vasculature. BS, brainstem; CVOs, circumventricular organs; HY, hypothalamus; OB, olfactory bulb; OE, olfactory epithelium.

References

    1. Agyeman AA, Lee Chin K, Landersdorfer CB, Liew D, Ofori-Asenso R. 2020. Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis. Mayo Clin Proc 95(8):1621–31.
    1. Aragão MFVV, Leal MC, Cartaxo Filho OQ, Fonseca TM, Valença MM. 2020. Anosmia in COVID-19 associated with injury to the olfactory bulbs evident on MRI. AJNR Am J Neuroradiol Epub June 5. doi:10.3174/ajnr.A6675
    1. Asselta R, Paraboschi EM, Mantovani A, Duga S. 2020. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY) 12(11):10087–98
    1. Baig AM, Khaleeq A, Ali U, Syeda H. 2020. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11(7):995–8. doi:10.1021/acschemneuro.0c00122
    1. Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, and others. 2020. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583(7818):830–3. doi:10.1038/s41586-020-2312-y
    1. Baxter BD, Larson ED, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, and others. 2020. Transcriptional profiling reveals TRPM5-expressing cells involved in viral infection in the olfactory epithelium. bioRxiv. 2020.05.14.096016. Published 2020 May 15. doi:10.1101/2020.05.14.096016
    1. Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A, and others. 2020. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. MedRxiv. 10.1101/2020.04.03.20047977
    1. Bénézit F, Le Turnier P, Declerck C, Paillé C, Revest M, Dubée V, and others. 2020. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect Dis. Epub April 15. doi:10.1016/S1473-3099(20)30297-8
    1. Bertlich M, Stihi C, Weiss BG, Canis M, Haubner F, Ihler F. 2020. Characteristics of impaired chemosensory function in hospitalized COVID-19 Patients. Preprint SSRN. doi:10.2139/ssrn.3576889
    1. Bilinska K, Jakubowska P, von Bartheld CS, Butowt R. 2020. Expression of the SARS-CoV-2 entry proteins ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 11(11):1555–62. doi:10.1021/acschemneuro.0c00210
    1. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, and others. 2020. Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. Sci Adv 6(31):eabc5801. doi:10.1126/sciadv.abc5801
    1. Brann JH, Firestein SJ. 2014. A lifetime of neurogenesis in the olfactory system. Front Neurosci 8:182. doi:10.3389/fnins.2014.00182
    1. Briguglio M, Bona A, Porta M, Dell’Osso B, Pregliasco FE, Banfi G. 2020. Disentangling the hypothesis of host dysosmia and SARS-CoV-2: The bait symptom that hides neglected neurophysiological routes. Front Physiol 11:671. doi:10.3389/fphys.2020.00671
    1. Bryche B, Deliot ASA, Murri S, Lacôte S, Pulido C, Gouilh MA, and others. 2020. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Preprint bioRxiv. doi:10.1101/2020.06.16.151704
    1. Butowt R, Bilinska K. 2020. SARS-CoV-2: olfaction, brain infection and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci 11(9):1200–3. 10.1021/acschemneuro.0c00172
    1. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, and others. 2020. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 6:11. doi:10.1038/s41421-020-0147-1
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, and others. 2020. a. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan China: a descriptive study. Lancet 395(10223):507–13. doi:10.1016/S0140-6736(20)30211-7
    1. Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, and others. 2020. b. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Preprint bioRxiv. doi:10.1101/2020.05.08.084996
    1. Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, and others. 2020. COVID-19 and the chemical senses: supporting players take center stage. Neuron 107:219–33. doi:10.1016/j.neuron.2020.06.032
    1. Dell’Era V, Farri F, Garzaro G, Gatto M, Aluffi Valletti P, Garzaro M. 2020. Smell and taste disorders during COVID-19 outbreak: a cross-sectional study on 355 patients. Head Neck 42(7):1591–6. doi:10.1002/hed.26288
    1. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, and others. 2019. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 12(1):14. doi:10.3390/v12010014
    1. Dos Santos NPC, Khayat AS, Rodrigues JCG, Pinto P, de Araujo GS, Pastana LF, and others. 2020. TMPRSS2 variants and their susceptibility to COVID-19: focus in East Asian and European populations. MedRxiv Preprint. 10.1101/2020.06.09.20126680
    1. DosSantos MF, Devalle S, Aran V, Capra D, Roque NR, Coelho-Aguiar JdeM, and others. 2020. Neuromechanisms of SARS-CoV-2: a review. Front Neuroanat 14:37. doi:10.3389/fnana.2020.00037
    1. Doty RL, Mishra A. 2001. Olfaction and its alteration by nasal obstruction, rhinitis, and rhinosinusitis. Laryngoscope 111(3):409–23. doi:10.1097/00005537-200103000-00008
    1. Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. 2018. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 92(17):e00404-18. doi:10.1128/JVI.00404-18
    1. Durante MA, Kurtenbach S, Sargi ZB, Harbour JW, Choi R, Kurtenbach S, and others. 2020. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat Neurosci 23(3):323–6. doi:10.1038/s41593-020-0587-9
    1. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, and others. 2020. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med Epub June 17. doi:10.1056/NEJMoa2020283
    1. Eliezer M, Hautefort C, Hamel AL, Verillaud B, Herman P, Houdart E, and others 2020. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. Epub April 8. doi:10.1001/jamaoto.2020.0832
    1. Fodoulian L, Tuberosa J, Rossier D, Landis BN, Carleton A, Rodriguez I. 2020. SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. BioRxiv preprint. doi:10.1101/2020.03.31.013268
    1. Forster P, Forster L, Renfrew C, Forster M. 2020. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A 117(17):9241–3. doi:10.1073/pnas.2004999117
    1. Friedrich G, Soriano P. 1991. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5(9):1513–23. doi:10.1101/gad.5.9.1513
    1. Gane SB, Kelly C, Hopkins C. 2020. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology 58(3):299–301. doi:10.4193/Rhin20.114.
    1. Gilani S, Roditi R, Naraghi M. 2020. COVID-19 and anosmia in Tehran, Iran. Med Hypotheses 141:109757. doi:10.1016/j.mehy.2020.109757.
    1. Grant MC, Geoghegan L, Arbyn M, Mohammed Z, McGuinness L, Clarke EL, and others. 2020. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS One 15(6):e0234765. doi:10.1371/journal.pone.0234765
    1. Grubaugh ND, Hanage WP, Rasmussen AL. 2020. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell. Epub July 3. doi:10.1016/j.cell.2020.06.040
    1. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, and others. 2005. Multiple organ infection and the pathogenesis of SARS. J Exp Med 202(3):415–24. doi:10.1084/jem.20050828
    1. Guan WJ, Ni ZY, Hu Y, Liang W-H, Ou C-Q, He J-X, and others. 2020. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–20. doi:10.1056/NEJMoa2002032
    1. Gupta K, Mohanty SK, Kalra S, Mittal A, Mishra T, Ahuja J, and others. 2020. The molecular basis of loss of smell in 2019-nCoV infected individuals. Research Square Preprint. doi:10.21203/-19884/v1
    1. Hannum ME, Ramirez VA, Lipson SJ, Herriman RD, Toskala AK, Lin C, and others. 2020. Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19–positive patients compared to subjective methods: a systematic review and meta-analysis. MedRxiv preprint. doi:10.1101/2020.07.04.20145870.
    1. Heydel JM, Coelho A, Thiebaud N, Legendre A, Bon A-M, Faure P, and others. 2013. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. Anat Rec (Hoboken) 296(9):1333–45. doi:10.1002/ar.22735
    1. Hopkins C, Surda P, Kumar N. 2020. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology 58(3):295–8. doi:10.4193/Rhin20.116
    1. Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, 3rd, and others. 2020. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182(2):429-446.e14. doi:10.1016/j.cell.2020.05.042
    1. Hummel T, Whitcroft KL, Andrews P, Altundag A, Cinghi C, Costanzo RM, and others. 2017. Position paper on olfactory dysfunction. Rhinol Suppl 54(26):1–30. doi:10.4193/Rhino16.248
    1. Hwang CS. 2006. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwan 15(1):26–8.
    1. Irvin JD, Viau JM. 1986. Safety profiles of the angiotensin converting enzyme inhibitors captopril and enalapril. Am J Med 81(4C):46–50. doi:10.1016/0002-378 9343(86)90945-9.
    1. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EN, Aschenbach JE, Babcock GJ, and others. 2004. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101(44):15748–53. doi:10.1073/pnas.0403812101
    1. Jennes L. 1987. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies. Ann N Y Acad Sci 519:165–73. doi:10.1111/j.1749-6632.1987.tb36295.x
    1. Jia C, Roman C, Hegg CC. 2010. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: protective and proliferative role of purinergic receptor activation. Toxicol Sci 115(2):547–56. doi:10.1093/toxsci/kfq071
    1. Jia Y, Shen G, Zhang Y, Huang K-S, Ho H-Y, Hor W-S, and others. 2020. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. bioRxiv preprint. doi:10.1101/2020.04.09.034942
    1. Jiang RD, Liu MQ, Chen Y, Shan C, Zhou Y-W, Shen X-R, and others. 2020. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182(1):50–58.e8. doi:10.1016/j.cell.2020.05.027
    1. Karimi-Galougahi M, Yousefi-Koma A, Bakhshayeshkaram M, Raad N, Haseli S. 2020. 18FDG PET/CT scan reveals hypoactive orbitofrontal cortex in anosmia of COVID-19. Acad Radiol 27(7):1042–3. doi:10.1016/j.acra.2020.04.030
    1. Kaye R, Chang CWD, Kazahaya K, Brereton J, Denneny JC, 3rd. 2020. COVID-19 anosmia reporting tool: initial findings. Otolaryngol Head Neck Surg 163(1):132-134. doi:10.1177/0194599820922992
    1. Kermen F, Midroit M, Kuczewski N, Forest J, Thevenet M, and others. 2016. Topographical representation of odor hedonics in the olfactory bulb. Nat Neurosci 19(7):876–8. doi:10.1038/nn.4317
    1. Klingenstein M, Klingenstein S, Neckel PH, Mack AF, Wagner A, Kleger A, and others. 2020. Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. bioRxiv preprint. doi:doi:10.1101/2020.07.15.204602
    1. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, and others. 2020. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4):812–827.e19. doi:10.1016/j.cell.2020.06.043
    1. Krolewski RC, Packard A, Schwob JE. 2013. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J Comp Neurol 521(4):833–59. doi:10.1002/cne.23204
    1. Larsell O. 1950. The nervus terminalis. Ann Otol Rhinol Laryngol 59:414–38. doi:10.1177/000348945005900211
    1. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, and others. 2020. a. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 277(8):2251–61. doi:10.1007/s00405-020-05965-1
    1. Lechien JR, Chiesa-Estomba CM, Hans S, Barillari MR, Jouffe L, Saussez S. 2020. b. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann Intern Med. Epub May 26. doi:10.7326/M20-2428
    1. Lee Y, Min P, Lee S, Kim SW. 2020. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci 35:e174. doi:10.3346/jkms.2020.35.e174
    1. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, and others. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24(8):1634–43. doi:10.1038/sj.emboj.7600640
    1. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, and others. 2020. a. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. Epub July 17, 2020. doi:10.1016/j.cell.2020.07.012
    1. Li Z, Liu T, Yang N, Han D, Mi X, Li Y, and others. 2020. b. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med. Epub May 4. doi:10.1007/s11684-020-0786-5
    1. Liang F. 2020. Sustentacular cell enwrapment of olfactory receptor neuronal dendrites: an update. Genes (Basel) 11:493. doi:10.3390/genes11050493
    1. Lochhead JJ, Thorne RG. 2012. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–28. doi:10.1016/j.addr.2011.11.002
    1. Lovato A, Antonini A, de Filippis C. 2020. Comment on “The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis”. Otolaryngol Head Neck Surg. Epub June 9. doi:10.1177/0194599820934761
    1. Mao L, Jin H, Wang M, Yu H, Chen Sm, He Q, and others. 2020. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan China. JAMA Neurol 77(6):1–9. doi:10.1001/jamaneurol.2020.1127
    1. McCray PB, Jr, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Netland J, and others. 2007. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 81(2):813–21. doi:10.1128/JVI.02012-06
    1. Meinhardt J, Radke J, Dittmayer C, Mothes R, Franz J, Laue M, and others. 2020. Olfactory transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 patients. Preprint bioRxiv. doi:10.1101/2020.06.04.135012.
    1. Menachery VD, Yount BL, Jr, Sims AC, Debbink K, Agnihothram SS, Gralinski SE, and others. 2016. SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A 113(11):3048–53. doi:10.1073/pnas.1517719113
    1. Meng X, Deng Y, Dai Z, Meng Z. 2020. COVID-19 and anosmia: a review based on up-to-date knowledge. Am J Otolaryngol 41(5):102581. doi:10.1016/j.amjoto.2020.102581
    1. Menni C, Sudre CH, Steves CJ, Ourselin S, Spector TD. 2020. a. Quantifying additional COVID-19 symptoms will save lives. Lancet 395(10241):e107–8. doi:10.1016/S0140-6736(20)31281-2
    1. Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, and others. 2020. b. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 26(7):1037–40. doi:10.1038/s41591-020-0916-2
    1. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, and others. 2020. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 94:55–8. doi:10.1016/j.ijid.2020.03.062
    1. Naeini AS, Karimi-Galougahi M, Raad N, Ghorbani J, Taraghi A, Haseli S, and others. 2020. Paranasal sinuses computed tomography findings in anosmia of COVID-19. Am J Otolaryngol 41(6):102636. doi:10.1016/j.amjoto.2020.102636
    1. Naik BS, Shetty N, Maben EVS. 2010. Drug-induced taste disorders. Eur J Intern Med 21(3):240–3. doi:10.1016/j.ejim.2010.01.017
    1. Nampoothiri S, Sauve S, Ternier G, Fernandois D, Coelho C, Imbernon M, and others. 2020. The hypothalamus as a hub for putative SARS-CoV-2 brain infection. bioRxiv preprint. doi:10.1101/2020.06.08.139329
    1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. 2008. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82(5):7264–75.
    1. Nickell MD, Breheny P, Stromberg AJ, McClintock TS. 2012. Genomics of mature and immature olfactory sensory neurons. J Comp Neurol 520(12):2608–29. doi:10.1002/cne.23052
    1. Norwood JN, Zhang Q, Card D, Craine A, Ryan TM, Drew PJ. 2019. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Elife 8:e44278. doi:10.7554/eLife.44278
    1. Oelschläger HA, Buhl EH, Dann JF. 1987. Development of the nervus terminalis in mammals including toothed whales and humans. Ann N Y Acad Sci 519:447–64. doi:10.1111/j.1749-6632.1987.tb36316.x
    1. Oliviero A, de Castro F, Coperchini F, Chiovato L, Rotondi M. 2020. COVID-19 pulmonary and olfactory dysfunctions: Is the chemokine CXCL10 the common denominator? Neuroscientist. Epub July 13. doi:10.1177/1073858420939033
    1. Oran DP, Topol EJ. 2020. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med M20-3012. doi:10.7326/M20-3012
    1. Ou J, Zhou Z, Zhang J, Lan W, Zhao S, Wu J, and others. 2020. RBD mutations from circulating SARS-CoV-2 strains enhance the structure stability and infectivity of the spike protein. bioRxiv preprint. doi:10.1101/2020.03.15.991844
    1. Pal R, Banerjee M. 2020. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest 43(7):1027–31. doi:10.1007/s40618-020-01276-8
    1. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, and others. 2020. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 92(7):699–702. doi:10.1002/jmv.25915
    1. Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, and others. 2020. More than just smell—COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. MedRxiv preprint. doi:10.1101/2020.05.04.20090902
    1. Passarelli PC, Lopez MA, Mastandrea Bonaviri GN, Garcia-Godoy F, D’Addona A. 2020. Taste and smell as chemosensory dysfunctions in COVID-19 infection. Am J Dent 33(3):135–7.
    1. Perlman S, Evans G, Afifi A. 1990. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med 172(4):1127–32. doi:10.1084/jem.172.4.1127
    1. Phelan J, Deelder W, Ward D, Campino S, Hibberd ML, Clark TG. 2020. Controlling the SARS-CoV-2 outbreak, insights from large scale whole genome sequences generated across the world. Preprint bioRxiv. doi:10.1101/2020.04.28.066977
    1. Plakhov IV, Arlund EE, Aoki C, Reiss CS. 1995. The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology 209(1):257–62. doi:10.1006/viro.1995.1252
    1. Politi LS, Salsano E, Grimaldi M. 2020. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. Epub May 29. doi:10.1001/jamaneurol.2020.2125
    1. Printza A, Constantinidis J. 2020. The role of self-reported smell and taste disorders in suspected COVID-19. Eur Arch Otorhinolaryngol 277(9):2625–39. doi:10.1007/s00405-020-06069-6
    1. Qiu C, Cui C, Hautefort C, Haehner A, Zhao J, Yao Q, and others. 2020. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study. MedRxiv preprint. 10.1101/2020.05.13.20100198
    1. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude BB, and others. 2020. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368(6494):1012–5. doi:10.1126/science.abb7314
    1. Rodriguez S, Cao L, Rickenbacher GT, Benz EG, Magdamo C, Gomez LAR, and others. 2020. Innate immune signaling in the olfactory epithelium reduces odorant receptor levels: modeling transient smell loss in COVID-19 patients. Preprint medRxiv. doi:10.1101/2020.06.14.20131128
    1. Sadeghipour S, Mathias RA. 2017. Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol 67:91–100. doi:10.1016/j.semcdb.2017.03.005
    1. Sakano H. 2010. Neural map formation in the mouse olfactory system. Neuron 67(4):530–42. doi:10.1016/j.neuron.2010.07.003
    1. Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, others. 2015. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 5:18178. doi:10.1038/srep18178
    1. Sato T, Ueha R, Goto T, Yamauchi A, Kondo K, Yamasoba T. 2020. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats. Preprint bioRxiv. doi:10.1101/2020.05.14.097204.
    1. Sayin I, Yazici ZM. 2020. Taste and smell impairment in SARS-CoV-2 recovers early and spontaneously: experimental data strongly linked to clinical data. ACS Chem Neurosci 11(14):2031–3. doi:10.1021/acschemneuro.0c00296
    1. Schwob JE. 2002. Neural regeneration and the peripheral olfactory system. Anat Rec 269(1):33–49. doi:10.1002/ar.10047
    1. Schwob JE, Youngentob SL, Mezza RC. 1995. Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J Comp Neurol 359(1):15–37. doi:10.1002/cne.903590103
    1. Sedaghat AR, Gengler I, Speth MM. 2020. Olfactory dysfunction: a highly prevalent symptom of COVID-19 with public health significance. Otolaryngol Head Neck Surg 163(1):12–5. doi:10.1177/0194599820926464
    1. Serrano-Castro PJ, Estivill-Torrús G, Cabezudo-García P, Reyes-Bueno JA, Ciano Petersen N, Aguilar-Castillo MJ, and others. 2020. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurologia 35:245–51. doi:10.1016/j.nrl.2020.04.002
    1. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, and others. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807):221–4. doi:10.1038/s41586-020-2179-y
    1. Sia SF, Yan LM, Chin AWH, Fung K, Choy K-T, Wong AYL, and others. 2020. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583(7818):834–8. doi:10.1038/s41586-020-2342-5
    1. Soler ZM, Patel ZM, Turner JH, Holbrook EH. 2020. A primer on viral-associated olfactory loss in the era of COVID-19. Int Forum Allergy Rhinol 10(7):814–20. doi:10.1002/alr.22578
    1. Strafella C, Caputo V, Termine A, Barati S, Gambardella S, Borgiani P, and others. 2020. Analysis of ACE2 genetic variability among populations highlights a possible link with COVID19-related neurological complications. Research Square preprint. doi:10.21203/-28871/v1
    1. Streeck H. 2020. Neue Corona-Symptome entdeckt: Virologe Hendrik Streeck zum Virus. Frankfurter Allgemeine Zeitung Mar 16.
    1. Strotmann J, Breer H. 2011. Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol 136(3):357–69.
    1. Sun J, Zhuang Z, Zheng J, Li K, Wong R L-Y, Liu D, and others. 2020. a. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell. Epub June 10. doi:10.1016/j.cell.2020.06.010
    1. Sun SH, Chen Q, Gu HJ, Yang G, Wang Y-X, Huang X-Y, and others. 2020. b. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28(1):124–133.e4. doi:10.1016/j.chom.2020.05.020
    1. Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. 2020. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 163(1):3–11. doi:10.1177/0194599820926473
    1. Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, Bayat A-H, Fathi M, Vakili K, and others. 2020. Proinflammatory cytokines in the olfactory mucosa result in COVID-19 induced anosmia. ACS Chem Neurosci 11(13):1909–13. doi:10.1021/acschemneuro.0c00249
    1. Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, and others. 2007. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J Virol 81(3):1162–73. doi:10.1128/JVI.01702-06
    1. Tudrej B, Sebo P, Lourdoaux J, Cuzin C, Floquet M, Haller DM, and others 2020. Self-reported loss of smell and taste in SARS-CoV-2 patients: primary care data to guide future early detection strategies. Research Square preprint. doi:10.21203/-28701/v1
    1. Ueha R, Kondo K, Kagoya R, Ueha S, Yamasoba T. 2020. Understanding olfactory dysfunction in COVID-19: Expression of ACE2, TMPRSS2 and Furin in the nose and olfactory bulb in human and mice. Preprint bioRxiv. doi:10.1101/2020.05.15.097352
    1. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M, Balloux F. 2020. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Preprint bioRxiv. doi:10.1101/2020.05.21.108506
    1. Vaira LA, Deiana G, Fois AG, Pirina P, Madeddu G, de Vito A, and others 2020. a. Objective evaluation of anosmia and ageusia in COVID-19 patients: single-center experience on 72 cases. Head Neck 42(6):1252–8. doi:10.1002/hed.26204
    1. Vaira LA, Salzano G, Deiana G, De Riu G. 2020. b. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope 130(7):1787. doi:10.1002/lary.28692.
    1. Vaira LA, Salzano G, Fois AG, Piombino P, de Riu G. 2020. c. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol. Epub April 27. doi:10.1002/alr.22593
    1. van Riel D, Verdijk R, Kuiken T. 2015. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 235(2):277–87. doi:10.1002/path.4461
    1. Vedin V, Slotnick B, Berghard A. 2004. Zonal ablation of the olfactory sensory neuroepithelium of the mouse: effects on odorant detection. Eur J Neurosci 20(7):1858–64. doi:10.1111/j.1460-9568.2004.03634.x
    1. Villar PS, Delgado R, Vergara C, Reyes JG, Bacigalupo J. 2017. Energy requirements of odor transduction in the chemosensory cilia of olfactory sensory neurons rely on oxidative phosphorylation and glycolytic processing of extracellular glucose. J Neurosci 37(23):5736–43. doi:10.1523/JNEUROSCI.2640-16.2017
    1. von Bartheld CS, Hagen MM, Butowt R. 2020. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. MedRxiv preprint. doi:10.1101/2020.06.15.20132134
    1. Walsh-Messinger J, Sahar K, Manis H, Kaye R, Cecchi G, Meyer P, and others. 2020. Standardized testing demonstrates altered odor detection sensitivity and hedonics in asymptomatic college students as SARS-CoV-2 emerged locally. Preprint medRxiv. doi:10.1101/2020.06.17.20106302
    1. Wang K, Chen W, Zhou YS, Lian JQ, Zhang Z, Du P, and others. 2020. a. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Preprint bioRxiv. doi:10.1101/2020.03.14.988345.
    1. Wang L, Shen Y, Li M, Chuang H, Ye Y, Zhao H, and others. 2020. b. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Neurol. Epub June 11. doi:10.1007/s00415-020-09974-2
    1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, and others. 2020. c. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323(18):1843–4. doi:10.1001/jama.2020.3786
    1. Wang Z, Yang B, Li Q, Wen L, Zhang R. 2020. d. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan China. Clin Infect Dis 71(15):769–77. doi:10.1093/cid/ciaa272
    1. Wang Z, Zhou J, Marshall B, Rekaya R, Ye K, Liu H-X. 2020. e. SARS-CoV-2 receptor ACE2 is enriched in a subpopulation of mouse tongue epithelial cells in nongustatory papillae but not in taste buds or embryonic oral epithelium. ACS Pharmacol Transl Sci 3(4):749–58. doi:10.1021/acsptsci.0c00062
    1. Williams FMK, Freidin MB, Mangino M, Couvreur S, Visconti A, Bowyer RCE. 2020. Self-reported symptoms of covid-19 including symptoms most predictive of SARS-CoV2 infection, are heritable. MedRxiv preprint. doi:10.1101/2020.04.22.20072124.
    1. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, and others. 2020. a. A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–9. doi:10.1038/s41586-020-2008-3
    1. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, and others. 2020. b. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 87:18–22. doi:10.1016/j.bbi.2020.03.031
    1. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, and others. 2020. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12(1):8. doi:10.1038/s41368-020-0074-x
    1. Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, Geisthoff UW, Bauer C, Hautefort C, and others. 2020. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. Epub April 15. doi:10.1016/S1473-3099(20)30293-0
    1. Yan CH, Faraji F, Prajapati DP, Ostrander BT, DeConde AS. 2020. Self-reported olfactory loss associates with outpatient clinical course in Covid-19. Int Forum Allergy Rhinol 10:821–31 doi:10.1002/alr.22592
    1. Yang XH, Deng W, Tong Z, Liu Y-X, Zhang L-F, Zhu H, and others. 2007. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med 57(5):450–9.
    1. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, and others 2020. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. Preprint. bioRxiv. doi:10.1101/2020.06.12.148726
    1. Zhou Z, Kang H, Li S, Zhao X. 2020. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 267(8):2179–84. doi:10.1007/s00415-020-09929-7
    1. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, and others. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 181(5):1016–35.e19. doi:10.1016/j.cell.2020.04.035
    1. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, and others. 2020. SARS-CoV-2 Viral load in upper respiratory specimens of infected patients. N Engl J Med 382(12):1177–9. doi:10.1056/NEJMc2001737
    1. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. 2020. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. Epub May 29. doi:10.1001/jamaneurol.2020.2065

Source: PubMed

Подписаться