Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome

Mareike Gierhardt, Oleg Pak, Dieter Walmrath, Werner Seeger, Friedrich Grimminger, Hossein A Ghofrani, Norbert Weissmann, Matthias Hecker, Natascha Sommer, Mareike Gierhardt, Oleg Pak, Dieter Walmrath, Werner Seeger, Friedrich Grimminger, Hossein A Ghofrani, Norbert Weissmann, Matthias Hecker, Natascha Sommer

Abstract

Acute respiratory distress syndrome (ARDS) is a serious complication of severe systemic or local pulmonary inflammation, such as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ARDS is characterised by diffuse alveolar damage that leads to protein-rich pulmonary oedema, local alveolar hypoventilation and atelectasis. Inadequate perfusion of these areas is the main cause of hypoxaemia in ARDS. High perfusion in relation to ventilation (V/Q<1) and shunting (V/Q=0) is not only caused by impaired hypoxic pulmonary vasoconstriction but also redistribution of perfusion from obstructed lung vessels. Rebalancing the pulmonary vascular tone is a therapeutic challenge. Previous clinical trials on inhaled vasodilators (nitric oxide and prostacyclin) to enhance perfusion to high V/Q areas showed beneficial effects on hypoxaemia but not on mortality. However, specific patient populations with pulmonary hypertension may profit from treatment with inhaled vasodilators. Novel treatment targets to decrease perfusion in low V/Q areas include epoxyeicosatrienoic acids and specific leukotriene receptors. Still, lung protective ventilation and prone positioning are the best available standard of care. This review focuses on disturbed perfusion in ARDS and aims to provide basic scientists and clinicians with an overview of the vascular alterations and mechanisms of V/Q mismatch, current therapeutic strategies, and experimental approaches.

Conflict of interest statement

Conflict of interest: M. Gierhardt has nothing to disclose. Conflict of interest: O. Pak has nothing to disclose. Conflict of interest: D. Walmrath has nothing to disclose. Conflict of interest: W. Seeger reports personal fees from Actelion, Bayer AG, Abivax, Vectura, Medspray, United Therapeutics and Liquidia, outside the submitted work. Conflict of interest: F. Grimminger has nothing to disclose. Conflict of interest: H.A. Ghofrani has nothing to disclose. Conflict of interest: N. Weissmann has nothing to disclose. Conflict of interest: M. Hecker has nothing to disclose. Conflict of interest: N. Sommer has nothing to disclose.

Copyright ©The authors 2021.

Figures

FIGURE 1
FIGURE 1
Mechanism of ventilation/perfusion (V/Q) mismatch in acute respiratory distress syndrome (ARDS). a) ARDS is characterised by diffuse alveolar damage leading to oedema and atelectasis. The computed tomography scan performed in supine position of the patient demonstrates bilateral dense consolidations (*) in the most dependent region and normal attenuation in the non-dependent region of the lung. b) In healthy lungs alveolar hypoxia (e.g. due to hypoventilation) leads to hypoxic pulmonary vasoconstriction (HPV) of precapillary vessels matching the perfusion (Q) to regional ventilation (V) and thus optimising arterial oxygenation. c) In ARDS a disbalance of vasoconstriction in well ventilated areas and vasodilation in poorly ventilated areas (due to inhibition of HPV) results in blood flow redistribution from well to poorly ventilated alveoli and a V/Q mismatch leading to hypoxaemia. Further factors contributing to low perfusion of well-ventilated alveoli are vascular obstruction by oedema, infiltration, and (micro)thrombosis. In the schematic, the size of vessels indicates amount of blood flow. CO: cardiac output; PvO2: mixed venous partial pressure of O2.
FIGURE 2
FIGURE 2
Trigger mechanisms, modulation and acute respiratory distress syndrome (ARDS)-related dysregulation of hypoxic pulmonary vasoconstriction (HPV). a) Primary mechanisms underlying HPV include oxygen sensing by mitochondria with a subsequent change in cellular redox state and/or release of reactive oxygen species that interact with various plasma membrane ion channels to trigger a cytosolic calcium increase and HPV. Other mechanisms which may contribute to HPV include a change in intracellular AMP/ATP levels, activation of phospholipase C, increasing diacylglycerol levels and propagation of endothelial signals by gap junctions and sphingosine-1-phosphate signalling. During prolonged hypoxia, further mechanisms such as increased calcium sensitisation by Rho-kinase may come into play. Dashed lines/symbols indicate hypothetical pathways. b) HPV is modulated by the endothelium through factors involving nitric oxide (NO)–soluble guanylyl cyclase–cyclic guanosine monophosphate signalling, arachidonic acid-derived vasoactive factors (such as prostacyclin (PGI2), thromboxane A2 (TXA2) and epoxyeicosatrienoic acids (EETs)), angiotensin II (ATII) and endothelin-1 (ET-1), prompting vasodilation or vasoconstriction. Leukotrienes have direct effects on the smooth muscle cell but mainly act in ARDS via promoting inflammation. In ARDS, a locally high increase of NO, PGI2 and decrease of EET may inhibit HPV and cause low ventilation/perfusion (V/Q) areas. In contrast, an increase of the vasoconstrictive substances ATII, ET-1 and TXA2 in the pulmonary circulation causes vasoconstriction thereby promoting V/Q mismatch and pulmonary hypertension. Alterations in the levels of the different vasoactive substances in ARDS are given in red arrows, with the arrows in brackets when only data for animal studies are available. Therapeutic approaches that were/are tested in clinical trials are given in green. Please note that inhaled NO and prostacyclines enhance vasodilation only in ventilated lung areas. Thereby they improve V/Q matching in 1) high V/Q areas and 2) low V/Q areas by decreasing redistribution of blood flow. For detailed information please refer to text. AA: arachidonic acid; AGTR1: angiotensin receptor 1; ACE: angiotensin converting enzyme; AMP: adenosine monophosphate; AT: angiotensin; ATP: adenosine triphosphase; AMPK: 5′ AMP-activated protein kinase; BLT1: leukotriene B4 receptor 1; CFTR: cystic fibrosis transmembrane conductance regulator; COX: cyclooxygenase; Cox4i2: cytochrome C oxidase subunit 4I2; CYP450: cytochrome P450; CysLTs: cysteinyl leukotrienes; CysLTR1: cysteinyl leukotriene receptor 1; Cx40: connexin 40; DAG: diacylglycerol; ΔEm: membrane potential; EC: endothelial cell; IP: prostaglandin I2 receptor; GJ: gap junctions; (c)GMP: (cyclic) guanosine monophosphate; GSSG/GSH: redox state of glutathione; GTP: guanosine triphosphate; Kv: voltage-dependent potassium; 5-LOX: 5-lipoxygenase; LTB4: leukotriene B4; NAD/NADH: redox state of nicotinamide adenine dinucleotide; (i)NO: (inhaled) nitric oxide; (i)NOS: (inducible) nitric oxide synthase; PASMC: pulmonary artery smooth muscle cell; PDE5: phosphodiesterase 5; PLA2: phospholipase A2; PLC: phospholipase C; rhACE2: recombinant human angiotensin converting enzyme 2; ROCK: rho-associated kinase; S1P: sphingosine-1-phosphate; sEH: soluble epoxide hydrolase; sGC: soluble guanylyl cyclase; SphK1: sphingosinekinase 1; TP: T prostanoid receptor; TRPC6: transient receptor potential canonical channel type 6; TRPV4: transient receptor potential vanilloid 4; VDCC: voltage-dependent calcium channel; V/Q: ratio of alveolar ventilation to perfusion.
FIGURE 3
FIGURE 3
Schematic overview of therapeutic interventions addressing ventilation/perfusion (V/Q) mismatch. a) Prone positioning: in contrast to supine positioning (ai), prone positioning (aii) leads to recruitment of previously atelectatic dorsal lung areas for ventilation while the ventral lung areas become less ventilated. Promoted by gravitational distribution of blood flow, the large dorsal lung areas will show improved V/Q matching with V/Q ratios up to one, while V/Q matching in the smaller ventral lung will be impaired. b) Positive end-expiratory pressure (PEEP) ventilation: beside gravitation, vascular obstruction, redistribution of blood flow to poorly ventilated areas, and impaired hypoxic pulmonary vasoconstriction can lead to V/Q mismatch in acute respiratory distress syndrome (ARDS) (bi). PEEP ventilation (bii) can improve V/Q mismatch by opening atelectasis. However, at the same time it may cause hyperinflation of previously well-ventilated alveoli, and thereby 1) restrict perfusion in these areas causing areas of a high V/Q ratio and 2) cause redistribution of perfusion to less ventilated dependent lung regions. In the schematic, the size of vessels indicates amount of blood flow. For detailed information please refer to main text. CO: cardiac output; PVO2: mixed venous partial pressure of O2.

References

    1. Ashbaugh DG, Bigelow DB, Petty TL, et al. . Acute respiratory distress in adults. Lancet 1967; 2: 319–323. doi:10.1016/S0140-6736(67)90168-7
    1. Matthay MA, Zemans RL, Zimmerman GA, et al. . Acute respiratory distress syndrome. Nat Rev Dis Primers 2019; 5: 18. doi:10.1038/s41572-019-0069-0
    1. Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care 2014; 4: 28. doi:10.1186/s13613-014-0028-6
    1. ARDS Definition Task Force , Ranieri VM, Rubenfeld GD, et al. . Acute respiratory distress syndrome: the Berlin definition. JAMA 2012; 307: 2526–2533. doi:10.1001/jama.2012.5669
    1. Hecker M, Weigand MA, Mayer K. Adjunctive pharmacotherapy for acute respiratory distress syndrome. Dtsch Med Wochenschr 2017; 142: 96–101. doi:10.1055/s-0042-105943
    1. Hagau N, Slavcovici A, Gonganau DN, et al. . Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. Crit Care 2010; 14: R203. doi:10.1186/cc9324
    1. Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J 2014; 44: 1023–1041. doi:10.1183/09031936.00037014
    1. Radermacher P, Maggiore SM, Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196: 964–984. doi:10.1164/rccm.201610-2156SO
    1. Dantzker DR, Brook CJ, Dehart P, et al. . Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 1979; 120: 1039–1052. doi:10.1164/arrd.1979.120.5.1039
    1. Ralph DD, Robertson HT, Weaver LJ, et al. . Distribution of ventilation and perfusion during positive end-expiratory pressure in the adult respiratory distress syndrome. Am Rev Respir Dis 1985; 131: 54–60. doi:10.1164/arrd.1985.131.1.54
    1. Dakin J, Jones AT, Hansell DM, et al. . Changes in lung composition and regional perfusion and tissue distribution in patients with ARDS. Respirology 2011; 16: 1265–1272. doi:10.1111/j.1440-1843.2011.02048.x
    1. Esnault P, Hraiech S, Bordes J, et al. . Evaluation of almitrine infusion during veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome in adults. Anesth Analg 2019; 129: e48–e51. doi:10.1213/ANE.0000000000002786
    1. Sommer N, Strielkov I, Pak O, et al. . Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2016; 47: 288–303. doi:10.1183/13993003.00945-2015
    1. Marshall BE, Marshall C, Benumof J, et al. . Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J Appl Physiol Respir Environ Exerc Physiol 1981; 51: 1543–1551.
    1. Naeije R, Brimioulle S. Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 2001; 5: 67–71. doi:10.1186/cc989
    1. Marshall BE, Hanson CW, Frasch F, et al. . Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med 1994; 20: 379–389. doi:10.1007/BF01720916
    1. Boissier F, Razazi K, Thille AW, et al. . Echocardiographic detection of transpulmonary bubble transit during acute respiratory distress syndrome. Ann Intensive Care 2015; 5: 5. doi:10.1186/s13613-015-0046-z
    1. Aeffner F, Bolon B, Davis IC. Mouse models of acute respiratory distress syndrome: a review of analytical approaches, pathologic features, and common measurements. Toxicol Pathol 2015; 43: 1074–1092. doi:10.1177/0192623315598399
    1. Hales CA, Sonne L, Peterson M, et al. . Role of thromboxane and prostacyclin in pulmonary vasomotor changes after endotoxin in dogs. J Clin Invest 1981; 68: 497–505. doi:10.1172/JCI110281
    1. Price LC, McAuley DF, Marino PS, et al. . Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 302: L803–L815. doi:10.1152/ajplung.00355.2011
    1. Moloney ED, Evans TW. Pathophysiology and pharmacological treatment of pulmonary hypertension in acute respiratory distress syndrome. Eur Respir J 2003; 21: 720–727. doi:10.1183/09031936.03.00120102
    1. Wilkins MR, Ghofrani HA, Weissmann N, et al. . Pathophysiology and treatment of high-altitude pulmonary vascular disease. Circulation 2015; 131: 582–590. doi:10.1161/CIRCULATIONAHA.114.006977
    1. Sylvester JT. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92: 367–520. doi:10.1152/physrev.00041.2010
    1. Grimmer B, Kuebler WM. The endothelium in hypoxic pulmonary vasoconstriction. J Appl Physiol 2017; 123: 1635–1646. doi:10.1152/japplphysiol.00120.2017
    1. Strielkov I, Pak O, Sommer N, et al. . Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. J Appl Physiol 2017; 123: 1647–1656. doi:10.1152/japplphysiol.00103.2017
    1. Sommer N, Alebrahimdehkordi N, Pak O, et al. . Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Sci Adv 2020; 6: eaba0694. doi:10.1126/sciadv.aba0694
    1. Waypa GB, Marks JD, Guzy RD, et al. . Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 2013; 187: 424–432. doi:10.1164/rccm.201207-1294OC
    1. Sommer N, Huttemann M, Pak O, et al. . Mitochondrial complex IV subunit 4 isoform 2 is essential for acute pulmonary oxygen sensing. Circ Res 2017; 121: 424–438. doi:10.1161/CIRCRESAHA.116.310482
    1. Michelakis ED. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol 2004; 37: 1119–1136.
    1. Robertson TP, Mustard KJ, Lewis TH, et al. . AMP-activated protein kinase and hypoxic pulmonary vasoconstriction. Eur J Pharmacol 2008; 595: 39–43. doi:10.1016/j.ejphar.2008.07.035
    1. Spohr F, Busch CJ, Reich C, et al. . 4-Aminopyridine restores impaired hypoxic pulmonary vasoconstriction in endotoxemic mice. Anesthesiology 2007; 107: 597–604. doi:10.1097/01.anes.0000281897.13703.fd
    1. Turzo M, Vaith J, Lasitschka F, et al. . Role of ATP-sensitive potassium channels on hypoxic pulmonary vasoconstriction in endotoxemia. Respir Res 2018; 19: 29. doi:10.1186/s12931-018-0735-x
    1. Warrillow S, Egi M, Bellomo R. Randomized, double-blind, placebo-controlled crossover pilot study of a potassium channel blocker in patients with septic shock. Crit Care Med 2006; 34: 980–985. doi:10.1097/01.CCM.0000206114.19707.7C
    1. Rigoulet M, Ouhabi R, Leverve X, et al. . Almitrine, a new kind of energy-transduction inhibitor acting on mitochondrial ATP synthase. Biochim Biophys Acta 1989; 975: 325–329. doi:10.1016/S0005-2728(89)80339-1
    1. Ghofrani HA, Wiedemann R, Rose F, et al. . Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet 2002; 360: 895–900. doi:10.1016/S0140-6736(02)11024-5
    1. Zhao L, Mason NA, Morrell NW, et al. . Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 2001; 104: 424–428. doi:10.1161/hc2901.093117
    1. Blanco I, Gimeno E, Munoz PA, et al. . Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Am J Respir Crit Care Med 2010; 181: 270–278. doi:10.1164/rccm.200907-0988OC
    1. Tarry D, Powell M. Hypoxic pulmonary vasoconstriction. BJA Educ 2017; 17: 208–213. doi:10.1093/bjaed/mkw076
    1. Naeije R, Melot C, Mols P, et al. . Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 1982; 82: 404–410. doi:10.1378/chest.82.4.404
    1. Radermacher P, Huet Y, Pluskwa F, et al. . Comparison of ketanserin and sodium nitroprusside in patients with severe ARDS. Anesthesiology 1988; 68: 152–157. doi:10.1097/00000542-198801000-00030
    1. Rossaint R, Falke KJ, Lopez F, et al. . Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328: 399–405. doi:10.1056/NEJM199302113280605
    1. Walmrath D, Schneider T, Schermuly R, et al. . Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome. Am J Respir Crit Care Med 1996; 153: 991–996. doi:10.1164/ajrccm.153.3.8630585
    1. Radermacher P, Santak B, Becker H, et al. . Prostaglandin E1 and nitroglycerin reduce pulmonary capillary pressure but worsen ventilation-perfusion distributions in patients with adult respiratory distress syndrome. Anesthesiology 1989; 70: 601–606. doi:10.1097/00000542-198904000-00008
    1. Price LC, Wort SJ, Finney SJ, et al. . Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care 2010; 14: R169. doi:10.1186/cc9264
    1. Stolz D, Rasch H, Linka A, et al. . A randomised, controlled trial of bosentan in severe COPD. Eur Respir J 2008; 32: 619–628. doi:10.1183/09031936.00011308
    1. Melot C, Naeije R, Hallemans R, et al. . Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Respir Physiol 1987; 68: 11–27. doi:10.1016/0034-5687(87)90073-9
    1. Melot C, Hallemans R, Naeije R, et al. . Deleterious effect of nifedipine on pulmonary gas exchange in chronic obstructive pulmonary disease. Am Rev Respir Dis 1984; 130: 612–616. doi:10.1164/arrd.1984.130.4.612
    1. Melot C, Naeije R, Mols P, et al. . Pulmonary vascular tone improves pulmonary gas exchange in the adult respiratory distress syndrome. Am Rev Respir Dis 1987; 136: 1232–1236. doi:10.1164/ajrccm/136.5.1232
    1. Kiely DG, Cargill RI, Lipworth BJ. Angiotensin II receptor blockade and effects on pulmonary hemodynamics and hypoxic pulmonary vasoconstriction in humans. Chest 1996; 110: 698–703. doi:10.1378/chest.110.3.698
    1. Cargill RI, Lipworth BJ. Lisinopril attenuates acute hypoxic pulmonary vasoconstriction in humans. Chest 1996; 109: 424–429. doi:10.1378/chest.109.2.424
    1. Kiely DG, Cargill RI, Lipworth BJ. Acute hypoxic pulmonary vasoconstriction in man is attenuated by type I angiotensin II receptor blockade. Cardiovasc Res 1995; 30: 875–880. doi:10.1016/S0008-6363(95)00129-8
    1. Konstam MA, Kiernan MS, Bernstein D, et al. . Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 2018; 137: e578–e622. doi:10.1161/CIR.0000000000000560
    1. Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India 2017; 34: 47–60. doi:10.4103/0970-2113.197116
    1. Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology 2015; 122: 932–946. doi:10.1097/ALN.0000000000000569
    1. Lopez-Lopez JR, Perez-Garcia MT, Canet E, et al. . Effects of almitrine bismesylate on the ionic currents of chemoreceptor cells from the carotid body. Mol Pharmacol 1998; 53: 330–339. doi:10.1124/mol.53.2.330
    1. Teppema LJ, Balanos GM, Steinback CD, et al. . Effects of acetazolamide on ventilatory, cerebrovascular, and pulmonary vascular responses to hypoxia. Am J Respir Crit Care Med 2007; 175: 277–281. doi:10.1164/rccm.200608-1199OC
    1. Brett SJ, Evans TW. Measurement of endogenous nitric oxide in the lungs of patients with the acute respiratory distress syndrome. Am J Respir Crit Care Med 1998; 157: 993–997. doi:10.1164/ajrccm.157.3.9705060
    1. Ketabchi F, Ghofrani HA, Schermuly RT, et al. . Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction. Respir Res 2012; 13: 7. doi:10.1186/1465-9921-13-7
    1. Bakr A, Pak O, Taye A, et al. . Effects of dimethylarginine dimethylaminohydrolase-1 overexpression on the response of the pulmonary vasculature to hypoxia. Am J Respir Cell Mol Biol 2013; 49: 491–500. doi:10.1165/rcmb.2012-0330OC
    1. Ketabchi F, Egemnazarov B, Schermuly RT, et al. . Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 2009; 297: L977–L983. doi:10.1152/ajplung.00074.2009
    1. Blitzer ML, Loh E, Roddy MA, et al. . Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J Am Coll Cardiol 1996; 28: 591–596. doi:10.1016/0735-1097(96)00218-5
    1. Spohr F, Busch CJ, Teschendorf P, et al. . Selective inhibition of guanylate cyclase prevents impairment of hypoxic pulmonary vasoconstriction in endotoxemic mice. J Physiol Pharmacol 2009; 60: 107–112.
    1. Gross CM, Rafikov R, Kumar S, et al. . Endothelial nitric oxide synthase deficient mice are protected from lipopolysaccharide induced acute lung injury. PLoS One 2015; 10: e0119918. doi:10.1371/journal.pone.0119918
    1. Ullrich R, Bloch KD, Ichinose F, et al. . Hypoxic pulmonary blood flow redistribution and arterial oxygenation in endotoxin-challenged NOS2-deficient mice. J Clin Invest 1999; 104: 1421–1429. doi:10.1172/JCI6590
    1. Huang HJ, Isakow W, Byers DE, et al. . Imaging pulmonary inducible nitric oxide synthase expression with PET. J Nucl Med 2015; 56: 76–81. doi:10.2967/jnumed.114.146381
    1. Kobayashi A, Hashimoto S, Kooguchi K, et al. . Expression of inducible nitric oxide synthase and inflammatory cytokines in alveolar macrophages of ARDS following sepsis. Chest 1998; 113: 1632–1639. doi:10.1378/chest.113.6.1632
    1. Phillip Dellinger R, Parrillo JE. Mediator modulation therapy of severe sepsis and septic shock: does it work? Crit Care Med 2004; 32: 282–286. doi:10.1097/01.CCM.0000105423.06091.8E
    1. Kieft H, Roos AN, van Drunen JD, et al. . Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med 2005; 31: 524–532. doi:10.1007/s00134-005-2564-x
    1. Vincent JL, Privalle CT, Singer M, et al. . Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). Crit Care Med 2015; 43: 57–64. doi:10.1097/CCM.0000000000000554
    1. Kylhammar D, Radegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol 2017; 219: 728–756. doi:10.1111/apha.12749
    1. Sandoo A, van Zanten JJ, Metsios GS, et al. . The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 2010; 4: 302–312. doi:10.2174/1874192401004010302
    1. Jolliet P, Bulpa P, Thorens JB, et al. . Nitric oxide and prostacyclin as test agents of vasoreactivity in severe precapillary pulmonary hypertension: predictive ability and consequences on haemodynamics and gas exchange. Thorax 1997; 52: 369–372. doi:10.1136/thx.52.4.369
    1. Schilling MK, Gassmann N, Sigurdsson GH, et al. . Role of thromboxane and leukotriene B4 in patients with acute respiratory distress syndrome after oesophagectomy. Br J Anaesth 1998; 80: 36–40. doi:10.1093/bja/80.1.36
    1. Deby-Dupont G, Braun M, Lamy M, et al. . Thromboxane and prostacyclin release in adult respiratory distress syndrome. Intensive Care Med 1987; 13: 167–174. doi:10.1007/BF00254700
    1. Naeije R, Hallemans R, Melot C, et al. . Eicosanoids and hypoxic pulmonary vasoconstriction in normal man. Bull Eur Physiopathol Respir 1987; 23: 613–617.
    1. Bernard GR, Wheeler AP, Russell JA, et al. . The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 1997; 336: 912–918. doi:10.1056/NEJM199703273361303
    1. Yu H, Ni YN, Liang ZA, et al. . The effect of aspirin in preventing the acute respiratory distress syndrome/acute lung injury: a meta-analysis. Am J Emerg Med 2018; 36: 1486–1491. doi:10.1016/j.ajem.2018.05.017
    1. Keseru B, Barbosa-Sicard E, Popp R, et al. . Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J 2008; 22: 4306–4315. doi:10.1096/fj.08-112821
    1. Kandhi S, Zhang B, Froogh G, et al. . EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. Am J Physiol Lung Cell Mol Physiol 2017; 313: L350–L359. doi:10.1152/ajplung.00038.2017
    1. Strielkov I, Krause NC, Knoepp F, et al. . Cytochrome P450 epoxygenase-derived 5,6-epoxyeicosatrienoic acid relaxes pulmonary arteries in normoxia but promotes sustained pulmonary vasoconstriction in hypoxia. Acta Physiol 2020; 230: e13521. doi:10.1111/apha.13521
    1. Zhou GL, Beloiartsev A, Yu B, et al. . Deletion of the murine cytochrome P450 Cyp2j locus by fused BAC-mediated recombination identifies a role for Cyp2j in the pulmonary vascular response to hypoxia. PLoS Genet 2013; 9: e1003950. doi:10.1371/journal.pgen.1003950
    1. Wepler M, Beloiartsev A, Buswell MD, et al. . Soluble epoxide hydrolase deficiency or inhibition enhances murine hypoxic pulmonary vasoconstriction after lipopolysaccharide challenge. Am J Physiol Lung Cell Mol Physiol 2016; 311: L1213–L1221. doi:10.1152/ajplung.00394.2016
    1. Tao W, Li PS, Yang LQ, et al. . Effects of a soluble epoxide hydrolase inhibitor on lipopolysaccharide-induced acute lung injury in mice. PLoS One 2016; 11: e0160359. doi:10.1371/journal.pone.0160359
    1. Yang L, Cheriyan J, Gutterman DD, et al. . Mechanisms of vascular dysfunction in COPD and effects of a novel soluble epoxide hydrolase inhibitor in smokers. Chest 2017; 151: 555–563. doi:10.1016/j.chest.2016.10.058
    1. Sato K, Morio Y, Morris KG, et al. . Mechanism of hypoxic pulmonary vasoconstriction involves ET(A) receptor-mediated inhibition of K(ATP) channel. Am J Physiol Lung Cell Mol Physiol 2000; 278: L434–L442. doi:10.1152/ajplung.2000.278.3.L434
    1. Petersen B, Deja M, Bartholdy R, et al. . Inhalation of the ETA receptor antagonist LU-135252 selectively attenuates hypoxic pulmonary vasoconstriction. Am J Physiol Regul Integr Comp Physiol 2008; 294: R601–R605. doi:10.1152/ajpregu.00739.2007
    1. Pham I, Wuerzner G, Richalet JP, et al. . Endothelin receptors blockade blunts hypoxia-induced increase in PAP in humans. Eur J Clin Invest 2010; 40: 195–202. doi:10.1111/j.1365-2362.2010.02254.x
    1. Druml W, Steltzer H, Waldhausl W, et al. . Endothelin-1 in adult respiratory distress syndrome. Am Rev Respir Dis 1993; 148: 1169–1173. doi:10.1164/ajrccm/148.5.1169
    1. Trachsel S, Hambraeus-Jonzon K, Bergquist M, et al. . No redistribution of lung blood flow by inhaled nitric oxide in endotoxemic piglets pretreated with an endothelin receptor antagonist. J Appl Physiol 2015; 118: 768–775. doi:10.1152/japplphysiol.00591.2014
    1. Jesmin S, Yamaguchi N, Zaedi S, et al. . Time-dependent expression of endothelin-1 in lungs and the effects of TNF-alpha blocking peptide on acute lung injury in an endotoxemic rat model. Biomed Res 2011; 32: 9–17. doi:10.2220/biomedres.32.9
    1. Kaisers U, Busch T, Wolf S, et al. . Inhaled endothelin A antagonist improves arterial oxygenation in experimental acute lung injury. Intensive Care Med 2000; 26: 1334–1342. doi:10.1007/s001340000608
    1. Guo Q, Huang JA, Fraidenburg DR. Bosentan as rescue treatment in refractory hypoxemia and pulmonary hypertension in a patient with ARDS and H7N9 influenza virus infection. Lung 2014; 192: 635–636. doi:10.1007/s00408-014-9602-9
    1. Tian W, Jiang X, Tamosiuniene R, et al. . Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med 2013; 5: 200ra117. doi:10.1126/scitranslmed.3006674
    1. Wright L, Tuder RM, Wang J, et al. . 5-Lipoxygenase and 5-lipoxygenase activating protein (FLAP) immunoreactivity in lungs from patients with primary pulmonary hypertension. Am J Respir Crit Care Med 1998; 157: 219–229. doi:10.1164/ajrccm.157.1.9704003
    1. Ichinose F, Zapol WM, Sapirstein A, et al. . Attenuation of hypoxic pulmonary vasoconstriction by endotoxemia requires 5-lipoxygenase in mice. Circ Res 2001; 88: 832–838. doi:10.1161/hh0801.089177
    1. Stephenson AH, Lonigro AJ, Hyers TM, et al. . Increased concentrations of leukotrienes in bronchoalveolar lavage fluid of patients with ARDS or at risk for ARDS. Am Rev Respir Dis 1988; 138: 714–719. doi:10.1164/ajrccm/138.3.714
    1. Caironi P, Ichinose F, Liu R, et al. . 5-Lipoxygenase deficiency prevents respiratory failure during ventilator-induced lung injury. Am J Respir Crit Care Med 2005; 172: 334–343. doi:10.1164/rccm.200501-034OC
    1. Wenzel D, Matthey M, Bindila L, et al. . Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction. Proc Natl Acad Sci USA 2013; 110: 18710–18715. doi:10.1073/pnas.1308130110
    1. Khodir AE, Ghoneim HA, Rahim MA, et al. . Montelukast reduces sepsis-induced lung and renal injury in rats. Can J Physiol Pharmacol 2014; 92: 839–847. doi:10.1139/cjpp-2014-0191
    1. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78: 539–552. doi:10.1016/j.bcp.2009.04.029
    1. Rabinovitch M, Guignabert C, Humbert M, et al. . Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014; 115: 165–175. doi:10.1161/CIRCRESAHA.113.301141
    1. Groth A, Vrugt B, Brock M, et al. . Inflammatory cytokines in pulmonary hypertension. Respir Res 2014; 15: 47. doi:10.1186/1465-9921-15-47
    1. Pandolfi R, Barreira B, Moreno E, et al. . Role of acid sphingomyelinase and IL-6 as mediators of endotoxin-induced pulmonary vascular dysfunction. Thorax 2017; 72: 460–471. doi:10.1136/thoraxjnl-2015-208067
    1. Horie S, McNicholas B, Rezoagli E, et al. . Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Med 2020; 46: 2265–2283. doi:10.1007/s00134-020-06141-z
    1. Balanos GM, Talbot NP, Dorrington KL, et al. . Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol 2003; 94: 1543–1551. doi:10.1152/japplphysiol.00890.2002
    1. Croft QP, Formenti F, Talbot NP, et al. . Variations in alveolar partial pressure for carbon dioxide and oxygen have additive not synergistic acute effects on human pulmonary vasoconstriction. PLoS One 2013; 8: e67886. doi:10.1371/journal.pone.0067886
    1. Dorrington KL, Balanos GM, Talbot NP, et al. . Extent to which pulmonary vascular responses to PCO2 and PO2 play a functional role within the healthy human lung. J Appl Physiol 2010; 108: 1084–1096. doi:10.1152/japplphysiol.90963.2008
    1. Cheng HY, Croft QPP, Frise MC, et al. . Human hypoxic pulmonary vasoconstriction is unaltered by 8 h of preceding isocapnic hyperoxia. Physiol Rep 2017; 5: e13396. doi:10.14814/phy2.13396
    1. Hambraeus-Jonzon K, Bindslev L, Mellgard AJ, et al. . Hypoxic pulmonary vasoconstriction in human lungs. A stimulus-response study. Anesthesiology 1997; 86: 308–315. doi:10.1097/00000542-199702000-00006
    1. Santos C, Ferrer M, Roca J, et al. . Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 2000; 161: 26–31. doi:10.1164/ajrccm.161.1.9902084
    1. Olsson KM, Halank M, Egenlauf B, et al. . Decompensated right heart failure, intensive care and perioperative management in patients with pulmonary hypertension: Updated recommendations from the Cologne Consensus Conference 2018. Int J Cardiol 2018; 272S: 46–52. doi:10.1016/j.ijcard.2018.08.081
    1. Bourgonje AR, Abdulle AE, Timens W, et al. . Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020; 251: 228–248. doi:10.1002/path.5471
    1. Wosten-van Asperen RM, Lutter R, Specht PA, et al. . Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J Pathol 2011; 225: 618–627. doi:10.1002/path.2987
    1. Treml B, Neu N, Kleinsasser A, et al. . Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med 2010; 38: 596–601. doi:10.1097/CCM.0b013e3181c03009
    1. Idell S, Kueppers F, Lippmann M, et al. . Angiotensin converting enzyme in bronchoalveolar lavage in ARDS. Chest 1987; 91: 52–56. doi:10.1378/chest.91.1.52
    1. Chen CM, Chou HC, Wang LF, et al. . Captopril decreases plasminogen activator inhibitor-1 in rats with ventilator-induced lung injury. Crit Care Med 2008; 36: 1880–1885. doi:10.1097/CCM.0b013e31817c911d
    1. Shen L, Mo H, Cai L, et al. . Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases. Shock 2009; 31: 500–506. doi:10.1097/SHK.0b013e318189017a
    1. Khan A, Benthin C, Zeno B, et al. . A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017; 21: 234. doi:10.1186/s13054-017-1823-x
    1. Wirtz H, Hasenclever D, Schwabe K, et al. . ACE inhibitor for lung protection during mechanical ventilation for acute lung injury – results of the double-blind, placebo controlled, randomised ACEmeVENT pilot study. Am J Respir Crit Care Med 2017; 195: A2895.
    1. Gattinoni L, Coppola S, Cressoni M, et al. . COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201: 1299–1300. doi:10.1164/rccm.202003-0817LE
    1. Gattinoni L, Chiumello D, Caironi P, et al. . COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 2020; 46: 1099–1102. doi:10.1007/s00134-020-06033-2
    1. Herrmann J, Mori V, Bates JHT, et al. . Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat Commun 2020; 11: 4883. doi:10.1038/s41467-020-18672-6
    1. Masi P, Bagate F, d'Humieres T, et al. . Is hypoxemia explained by intracardiac or intrapulmonary shunt in COVID-19-related acute respiratory distress syndrome? Ann Intensive Care 2020; 10: 108. doi:10.1186/s13613-020-00726-z
    1. Guan WJ, Ni ZY, Hu Y, et al. . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708–1720. doi:10.1056/NEJMoa2002032
    1. Dhont S, Derom E, Van Braeckel E, et al. . The pathophysiology of ‘happy' hypoxemia in COVID-19. Respir Res 2020; 21: 198. doi:10.1186/s12931-020-01462-5
    1. Menter T, Haslbauer JD, Nienhold R, et al. . Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathol 2020; 77: 198–209. doi:10.1111/his.14134
    1. Patel BV, Arachchillage DJ, Ridge CA, et al. . Pulmonary angiopathy in severe COVID-19: physiologic, imaging, and hematologic observations. Am J Respir Crit Care Med 2020; 202: 690–699. doi:10.1164/rccm.202004-1412OC
    1. Rebello CJ, Kirwan JP, Greenway FL. Obesity, the most common comorbidity in SARS-CoV-2: is leptin the link? Int J Obes 2020; 44: 1810–1817. doi:10.1038/s41366-020-0640-5
    1. Singh SK. Human Respiratory Viral Infections. Boca Raton, CRC Press, 2014.
    1. Imai Y, Kuba K, Penninger JM. Angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Cell Mol Life Sci 2007; 64: 2006–2012. doi:10.1007/s00018-007-6228-6
    1. Potus F, Mai V, Lebret M, et al. . Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319: L277–L288. doi:10.1152/ajplung.00195.2020
    1. Karmouty-Quintana H, Thandavarayan RA, Keller SP, et al. . Emerging mechanisms of pulmonary vasoconstriction in SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) and potential therapeutic targets. Int J Mol Sci 2020; 21: 8081. doi:10.3390/ijms21218081
    1. Pang X, Cui Y, Zhu Y. Recombinant human ACE2: potential therapeutics of SARS-CoV-2 infection and its complication. Acta Pharmacol Sin 2020; 41: 1255–1257. doi:10.1038/s41401-020-0430-6
    1. Sipmann FS, Santos A, Tusman G. Heart-lung interactions in acute respiratory distress syndrome: pathophysiology, detection and management strategies. Ann Transl Med 2018; 6: 27. doi:10.21037/atm.2017.12.07
    1. Tomashefski JF Jr, Davies P, Boggis C, et al. . The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 1983; 112: 112–126.
    1. Snow RL, Davies P, Pontoppidan H, et al. . Pulmonary vascular remodeling in adult respiratory distress syndrome. Am Rev Respir Dis 1982; 126: 887–892.
    1. Madahar P, Beitler JR. Emerging concepts in ventilation-induced lung injury. F1000Res 2020; 9: F1000 Faculty Rev-222. doi:10.12688/f1000research.20576.1
    1. Guerin C, Reignier J, Richard JC, et al. . Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159–2168. doi:10.1056/NEJMoa1214103
    1. Vieillard-Baron A, Charron C, Caille V, et al. . Prone positioning unloads the right ventricle in severe ARDS. Chest 2007; 132: 1440–1446. doi:10.1378/chest.07-1013
    1. Galiatsou E, Kostanti E, Svarna E, et al. . Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Respir Crit Care Med 2006; 174: 187–197. doi:10.1164/rccm.200506-899OC
    1. Karbing DS, Panigada M, Bottino N, et al. . Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: a prospective single-arm interventional study. Crit Care 2020; 24: 111. doi:10.1186/s13054-020-2834-6
    1. Bourenne J, Hraiech S, Rambaud R, et al. . Non-ventilatory therapies for acute respiratory distress syndrome. Minerva Anestesiol 2018; 84: 1093–1101. doi:10.23736/S0375-9393.18.12328-5
    1. Villar J, Ferrando C, Martinez D, et al. . Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020; 8: 267–276. doi:10.1016/S2213-2600(19)30417-5
    1. RECOVERY Collaborative Group , Horby P, Lim WS, et al. . Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021; 384: 693–704. [doi:10.1101/2020.06.22.20137273]
    1. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group , Sterne JAC, Murthy S, et al. . Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 2020; 324: 1330–1341. doi:10.1001/jama.2020.17023
    1. Gust R, McCarthy TJ, Kozlowski J, et al. . Response to inhaled nitric oxide in acute lung injury depends on distribution of pulmonary blood flow prior to its administration. Am J Respir Crit Care Med 1999; 159: 563–570. doi:10.1164/ajrccm.159.2.9806133
    1. Rovira I, Chen TY, Winkler M, et al. . Effects of inhaled nitric oxide on pulmonary hemodynamics and gas exchange in an ovine model of ARDS. J Appl Physiol 1994; 76: 345–355. doi:10.1152/jappl.1994.76.1.345
    1. Ruan SY, Wu HY, Lin HH, et al. . Inhaled nitric oxide and the risk of renal dysfunction in patients with acute respiratory distress syndrome: a propensity-matched cohort study. Crit Care 2016; 20: 389. doi:10.1186/s13054-016-1566-0
    1. Ferrari M, Santini A, Protti A, et al. . Inhaled nitric oxide in mechanically ventilated patients with COVID-19. J Crit Care 2020; 60: 159–160. doi:10.1016/j.jcrc.2020.08.007
    1. DeGrado JR, Szumita PM, Schuler BR, et al. . Evaluation of the efficacy and safety of inhaled epoprostenol and inhaled nitric oxide for refractory hypoxemia in patients with coronavirus disease 2019. Crit Care Explor 2020; 2: e0259. doi:10.1097/CCE.0000000000000259
    1. Longobardo A, Montanari C, Shulman R, et al. . Inhaled nitric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome. Br J Anaesth 2021; 126: e44–e46. doi:10.1016/j.bja.2020.10.011
    1. Garfield B, McFadyen C, Briar C, et al. . Potential for personalised application of inhaled nitric oxide in COVID-19 pneumonia. Br J Anaesth 2021; 126: e72–e75. doi:10.1016/j.bja.2020.11.006
    1. Fang W, Jiang J, Su L, et al. . The role of NO in COVID-19 and potential therapeutic strategies. Free Radic Biol Med 2020; 163: 153–162. doi:10.1016/j.freeradbiomed.2020.12.008
    1. Haeberle H, Prohaska S, Martus P, et al. . Therapeutic iloprost for the treatment of acute respiratory distress syndrome (ARDS) (the ThIlo trial): a prospective, randomized, multicenter phase II study. Trials 2020; 21: 242. doi:10.1186/s13063-020-4163-0
    1. Romaldini H, Rodriguez-Roisin R, Wagner PD, et al. . Enhancement of hypoxic pulmonary vasoconstriction by almitrine in the dog. Am Rev Respir Dis 1983; 128: 288–293. doi:10.1164/arrd.1983.128.2.288
    1. Dembinski R, Max M, Lopez F, et al. . Effect of inhaled nitric oxide in combination with almitrine on ventilation-perfusion distributions in experimental lung injury. Intensive Care Med 2000; 26: 221–228. doi:10.1007/s001340050051
    1. Reyes A, Roca J, Rodriguez-Roisin R, et al. . Effect of almitrine on ventilation-perfusion distribution in adult respiratory distress syndrome. Am Rev Respir Dis 1988; 137: 1062–1067. doi:10.1164/ajrccm/137.5.1062
    1. Gallart L, Lu Q, Puybasset L, et al. . Intravenous almitrine combined with inhaled nitric oxide for acute respiratory distress syndrome. The NO Almitrine Study Group. Am J Respir Crit Care Med 1998; 158: 1770–1777. doi:10.1164/ajrccm.158.6.9804066
    1. Bermejo S, Gallart L, Silva-Costa-Gomes T, et al. . Almitrine fails to improve oxygenation during one-lung ventilation with sevoflurane anesthesia. J Cardiothorac Vasc Anesth 2014; 28: 919–924. doi:10.1053/j.jvca.2013.03.019
    1. Golder FJ, Hewitt MM, McLeod JF. Respiratory stimulant drugs in the post-operative setting. Respir Physiol Neurobiol 2013; 189: 395–402. doi:10.1016/j.resp.2013.06.010
    1. Losser MR, Lapoix C, Delannoy M, et al. . Almitrine as a non-ventilatory strategy to improve intrapulmonary shunt in COVID-19 patients. Anaesth Crit Care Pain Med 2020; 39: 467–469. doi:10.1016/j.accpm.2020.05.013
    1. Caplan M, Goutay J, Bignon A, et al. . Almitrine infusion in severe acute respiratory syndrome coronavirus 2-induced acute respiratory distress syndrome: a single-center observational study. Crit Care Med 2021; 49: e191–e198. doi:10.1097/CCM.0000000000004711
    1. Repesse X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 2015; 147: 259–265. doi:10.1378/chest.14-0877
    1. Repesse X, Vieillard-Baron A. Right heart function during acute respiratory distress syndrome. Ann Transl Med 2017; 5: 295. doi:10.21037/atm.2017.06.66
    1. Cornet AD, Hofstra JJ, Swart EL, et al. . Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS. Intensive Care Med 2010; 36: 758–764. doi:10.1007/s00134-010-1754-3
    1. Radermacher P, Santak B, Wust HJ, et al. . Prostacyclin and right ventricular function in patients with pulmonary hypertension associated with ARDS. Intensive Care Med 1990; 16: 227–232. doi:10.1007/BF01705156

Source: PubMed

Подписаться