The effect of long-acting dual bronchodilator therapy on exercise tolerance, dynamic hyperinflation, and dead space during constant work rate exercise in COPD

William W Stringer, Janos Porszasz, Min Cao, Harry B Rossiter, Shahid Siddiqui, Stephen Rennard, Richard Casaburi, William W Stringer, Janos Porszasz, Min Cao, Harry B Rossiter, Shahid Siddiqui, Stephen Rennard, Richard Casaburi

Abstract

We investigated whether dual bronchodilator therapy (glycopyrrolate/formoterol fumarate; GFF; Bevespi Aerosphere) would increase exercise tolerance during a high-intensity constant work rate exercise test (CWRET) and the relative contributions of dead space ventilation (VD/VT) and dynamic hyperinflation (change in inspiratory capacity) to exercise limitation in chronic obstructive pulmonary disease (COPD). In all, 48 patients with COPD (62.9 ± 7.6 yrs; 33 male; GOLD spirometry stage 1/2/3/4, n = 2/35/11/0) performed a randomized, double blind, placebo (PL) controlled, two-period crossover, single-center trial. Gas exchange and inspiratory capacity (IC) were assessed during cycle ergometry at 80% incremental exercise peak work rate. Transcutaneous [Formula: see text] (Tc[Formula: see text]) measurement was used for VD/VT estimation. Baseline postalbuterol forced expiratory volume in 1 s (FEV1) was 1.86 ± 0.58 L (63.6% ± 13.9 predicted). GFF increased FEV1 by 0.18 ± 0.21 L relative to placebo (PL; P < 0.001). CWRET endurance time was greater after GFF vs. PL (383 ± 184 s vs. 328 ± 115 s; difference 55 ± 125 s; P = 0.013; confidence interval: 20-90 s), a 17% increase. IC on GFF was above placebo IC at all time points and fell less with GFF vs. PL (P ≤ 0.0001). Isotime tidal volume (1.54 ± 0.50 vs. 1.47 ± 0.45 L; P = 0.022) and ventilation (52.9 ± 19.9 vs. 51.0 ± 18.9 L/min; P = 0.011) were greater, and respiratory rate was unchanged (34.9 ± 9.2 vs. 35.1 ± 8.0 br/min, P = 0.865). Isotime VD/VT did not differ between groups (GFF 0.28 ± 0.08 vs. PL 0.27 ± 0.09; P = 0.926). GFF increased exercise tolerance in patients with COPD, and the increase was accompanied by attenuated dynamic hyperinflation without altering VD/VT.NEW & NOTEWORTHY This study was a randomized clinical trial (NCT03081156) that collected detailed physiology data to investigate the effect of dual bronchodilator therapy on exercise tolerance in COPD, and additionally to determine the relative contributions of changes in dead space ventilation (VD/VT) and dynamic hyperinflation to alterations in exercise limitation. We utilized a unique noninvasive method to assess VD/VT (transcutaneous carbon dioxide, Tc[Formula: see text]) and found that dual bronchodilators yielded a moderate improvement in exercise tolerance. Importantly, attenuation of dynamic hyperinflation rather than change in dead space ventilation was the most important contributor to exercise tolerance improvement.

Keywords: COPD; CPET; VD/VT; exercise intolerance; hyperinflation.

Conflict of interest statement

AstraZeneca also provided the medications and a placebo inhaler for the study. Dr. S. Rennard and S. Siddiqui were paid employees of AstraZeneca at the time the project was designed and performed. Dr. R. Casaburi has been a consultant for AstraZeneca.

Figures

Figure 1.
Figure 1.
Protocol and visit designation for this single-center, randomized, double-blind, placebo-controlled, two-period, crossover clinical trial. CPET, cardiopulmonary exercise testing; CT, computed tomography; CWR, constant work rate; LABA, long-acting beta agonists; LAMA, long-acting muscarinic antagonists; PFT, pulmonary function testing; V, visit.
Figure 2.
Figure 2.
A–P: physiologic responses to constant work rate exercise testing in patients with COPD receiving LAMA/LAMA therapy (closed circles) vs. Placebo (open circles). Description of visits is given in text. All data points are for 48 subjects, except the 4.5 minute time point, in which only 22 subjects completed this duration in both tests. *P < 0.05, **P = 0.01, ***P ≤ 0.001 by rmANOVA. V̇E (L/min), pulmonary ventilation; VT (L), tidal volume; RR (breaths/min), respiratory rate; V̇E/MVV (%), pulmonary ventilation divided by maximum voluntary ventilation; V̇o2 (L/min), oxygen uptake; V̇co2 (L/min), carbon dioxide output; HR (beats/min), heart rate; V̇o2/HR (mL/beat), oxygen pulse; V̇E/V̇co2, pulmonary ventilation divided by carbon dioxide output; PETCO2 (mmHg), end-tidal carbon dioxide partial pressure; TcPCO2 (mmHg), transcutaneous carbon dioxide partial pressure; VD/VT, dead space to tidal volume ratio; IRV (L), inspiratory reserve volume; IC (L), inspiratory capacity; SpO2 (%), oxygen saturation by pulse oximetry. COPD, chronic obstructive pulmonary disease; LAMA, long-acting muscarinic antagonists.
Figure 3.
Figure 3.
Perceptual responses to constant work rate exercise in patients with COPD receiving LAMA/LAMA therapy (closed circles) vs. Placebo (open circles). All data points are for 48 subjects except the 4.5-min time point, in which only 22 subjects completed this duration in both tests. There were no statistical differences in the Borg scores for either dyspnea (A) or leg fatigue (B). COPD, chronic obstructive pulmonary disease; CR10, Category and Ratio Scale of 10; LAMA, long-acting muscarinic antagonists.
Figure 4.
Figure 4.
Constant work rate exercise duration while receiving dual bronchodilator vs. placebo for 48 individual subjects with COPD. COPD, chronic obstructive pulmonary disease; CWRET, constant work rate exercise time; placebo versus GFF, dual LABA/LAMA bronchodilator; GFF, glycopyrrolate/formoterol fumarate; LABA, long-acting beta agonists; LAMA, long-acting muscarinic antagonists.

References

    1. Casaburi R. Strategies to reduce dynamic hyperinflation in chronic obstructive pulmonary disease. Pneumonol Alergol Pol 77: 192–195, 2009.
    1. Casaburi R, Maltais F, Porszasz J, Albers F, Deng Q, Iqbal A, Paden HA, O'Donnell DE; 205.440 Investigators. Effects of tiotropium on hyperinflation and treadmill exercise tolerance in mild to moderate chronic obstructive pulmonary disease. Ann Am Thorac Soc 11: 1351–1361, 2014. doi:10.1513/AnnalsATS.201404-174OC.
    1. Neder JA, Berton DC, Müller PT, Elbehairy AF, Rocha A, Palange P, O'Donnell DE; Canadian Respiratory Research Network. Ventilatory inefficiency and exertional dyspnea in early chronic obstructive pulmonary disease. Ann Am Thorac Soc 14: S22–S29, 2017. doi:10.1513/AnnalsATS.201612-1033FR.
    1. Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, O'Donnell DE, Onorati P, Porszasz J, Rabinovich R, Rossiter HB, Singh S, Troosters T, Ward S. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J 47: 429–460, 2016. doi:10.1183/13993003.00745-2015.
    1. O'Donnell DE, Lam M, Webb KA. Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158: 1557–1565, 1998. doi:10.1164/ajrccm.158.5.9804004.
    1. Puente-Maestu L, Stringer WW. Hyperinflation and its management in COPD. Int J Chron Obstruct Pulmon Dis 1: 381–400, 2006. doi:10.2147/copd.2006.1.4.381.
    1. Elbehairy AF, Ciavaglia CE, Webb KA, Guenette JA, Jensen D, Mourad SM, Neder JA, O'Donnell DE; Canadian Respiratory Research Network. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. Implications for dyspnea and exercise intolerance. Am J Respir Crit Care Med 191: 1384–1394, 2015. doi:10.1164/rccm.201501-0157OC.
    1. O'Donnell DE, Neder JA, Elbehairy AF. Physiological impairment in mild COPD. Respirology 21: 211–223, 2016. doi:10.1111/resp.12619.
    1. Bateman ED, Mahler DA, Vogelmeier CF, Wedzicha JA, Patalano F, Banerji D. Recent advances in COPD disease management with fixed-dose long-acting combination therapies. Expert Rev Respir Med 8: 357–379, 2014. doi:10.1586/17476348.2014.910457.
    1. Cope S, Donohue JF, Jansen JP, Kraemer M, Capkun-Niggli G, Baldwin M, Buckley F, Ellis A, Jones P. Comparative efficacy of long-acting bronchodilators for COPD: a network meta-analysis. Respir Res 14: 100, 2013. doi:10.1186/1465-9921-14-100.
    1. Huisman EL, Cockle SM, Ismaila AS, Karabis A, Punekar YS. Comparative efficacy of combination bronchodilator therapies in COPD: a network meta-analysis. Int J Chron Obstruct Pulmon Dis 10: 1863–1881, 2015.
    1. Di MF, Sotgiu G, Santus P, O'Donnell DE, Beeh KM, Dore S, Roggi MA, Giuliani L, Blasi F, Centanni S. Long-acting bronchodilators improve exercise capacity in COPD patients: a systematic review and meta-analysis. Respir Res 19: 18, 2018. doi:10.1186/s12931-018-0721-3.
    1. Loring SH, Garcia-Jacques M, Malhotra A. Pulmonary characteristics in COPD and mechanisms of increased work of breathing. J Appl Physiol (1985) 107: 309–314, 2009. doi:10.1152/japplphysiol.00008.2009.
    1. Vogel-Claussen J, Schönfeld CO, Kaireit TF, Voskrebenzev A, Czerner CP, Renne J, Tillmann HC, Berschneider K, Hiltl S, Bauersachs J, Welte T, Hohlfeld JM. Effect of indacaterol/glycopyrronium on pulmonary perfusion and ventilation in hyperinflated patients with chronic obstructive pulmonary disease (CLAIM). A double-blind, randomized, crossover trial. Am J Respir Crit Care Med 199: 1086–1096, 2019. doi:10.1164/rccm.201805-0995OC.
    1. Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A, MacIntyre NR, Thompson BR, Wanger J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J 49: 1600016, 2017.doi:10.1183/13993003.00016-2016.
    1. MacIntyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen OF, Pellegrino R, Wanger J. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26: 720–735, 2005. doi:10.1183/09031936.05.00034905.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J 26: 319–338, 2005. doi:10.1183/09031936.05.00034805.
    1. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G. Standardisation of the measurement of lung volumes. Eur Respir J 26: 511–522, 2005. doi:10.1183/09031936.05.00035005.
    1. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 159: 179–187, 1999. doi:10.1164/ajrccm.159.1.9712108.
    1. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 16: 5–40, 1993. doi:10.1183/09041950.005s1693.
    1. Cotes J. Lung Function (5th ed.). London: Blackwell Scientific Publications, 1993, p. 225–250.
    1. Lynch DA, Al-Qaisi MA. Quantitative computed tomography in chronic obstructive pulmonary disease. J Thorac Imaging 28: 284–290, 2013. doi:10.1097/RTI.0b013e318298733c.
    1. Lynch DA, Austin JH, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, Barr RG, Colby TV, Galvin JR, Gevenois PA, Coxson HO, Hoffman EA, Newell JD, Pistolesi M, Silverman EK, Crapo JD. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology 277: 192–205, 2015. doi:10.1148/radiol.2015141579.
    1. Porszasz J, Stringer W, Casaburi R. Equipment, measurements and quality control. In: Clinical Exercise Testing (ERS Monograph), edited by Palange P, Laveneziana P, Neder JA, Ward S.. Sheffeld, UK: European Respiratory Society, 2018, p. 59–81. doi:10.1183/2312508X.10011117.
    1. American Thoracic Society; American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167: 211–277, 2003. doi:10.1164/rccm.167.2.211.
    1. Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema K, S X-G, Whipp BJ. Principles of Exercise Testing and Interpretation: Pathophysiology and Clinical Applications. Baltimore, MD: Lippincott Williams & Wilkins, 2012.
    1. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting the anaerobic threshold by gas exchange. J Appl Physiol (1985) 60: 2020–2027, 1986. doi:10.1152/jappl.1986.60.6.2020.
    1. Degani-Costa LH, O'Donnell DE, Webb K, Aranda LC, Carlstron JP, Cesar TDS, Plachi F, Berton DC, Neder JA, Nery LE. A simplified approach to select exercise endurance intensity for interventional studies in COPD. COPD 15: 139–147, 2018. doi:10.1080/15412555.2018.1428944.
    1. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 350: 1005–1012, 2004. doi:10.1056/NEJMoa021322.
    1. Mahler DA, Wells CK. Evaluation of clinical methods for rating dyspnea. Chest 93: 580–586, 1988. doi:10.1378/chest.93.3.580.
    1. Ross JC, Estépar RSJ, Díaz A, Westin C-F, Kikinis R, Silverman EK, Washko GR. Lung extraction, lobe segmentation and hierarchical region assessment for quantitative analysis on high resolution computed tomography images. Med Image Comput Comput Assist Interv 12: 690–698, 2009. doi:10.1007/978-3-642-04271-3_84.
    1. Roman MA, Casaburi JD, Porszasz J, Casaburi R. Noninvasive assessment of normality of VD/VT in clinical cardiopulmonary exercise testing utilizing incremental cycle ergometry. Eur J Appl Physiol 113: 33–40, 2013. doi:10.1007/s00421-012-2407-8.
    1. Carter R, Banham SW. Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing. Respir Med 94: 350–355, 2000. doi:10.1053/rmed.1999.0714.
    1. Planès C, Leroy M, Foray E, Raffestin B. Arterial blood gases during exercise: validity of transcutaneous measurements. Arch Phys Med Rehabil 82: 1686–1691, 2001. doi:10.1053/apmr.2001.26248.
    1. O'Donnell DE, Elbehairy AF, Faisal A, Webb KA, Neder JA, Mahler DA. Exertional dyspnoea in COPD: the clinical utility of cardiopulmonary exercise testing. Eur Respir Rev 25: 333–347, 2016. doi:10.1183/16000617.0054-2016.
    1. Varga J, Casaburi R, Ma S, Hecht A, Hsia D, Somfay A, Porszasz J. Relation of dynamic airway compression to dynamic hyperinflation during exercise in COPD. Resp Physiol Neurobiol 234: 79–84, 2016. doi:10.1016/j.resp.2016.08.005.
    1. Cao M, Stringer WW, Corey S, Orogian A, Cao R, Calmelat R, Lin F, Casaburi R, Rossiter HB, Porszasz J. Transcutaneous PCO2 for exercise gas exchange efficiency in chronic obstructive pulmonary disease. COPD 18: 16–25, 2021. doi:10.1080/15412555.2020.1858403.
    1. Jones NL, McHardy GJR, Naimark A, Cambell EJM. Physiological dead space and alveolar-arterial gas pressure differences during exercise. Clin Sci 31: 19–29, 1966.
    1. Jones NL, Robertson DG, Kane JW. Difference between end-tidal and arterial PCO2 in exercise. J Appl Physiol Respir Environ Exerc Physiol 47: 954–960, 1979. doi:10.1152/jappl.1979.47.5.954.
    1. Kreit JW. Volume capnography in the intensive care unit: physiological principles, measurements, and calculations. Ann Am Thorac Soc 16: 291–300, 2019. doi:10.1513/AnnalsATS.201807-501CME.
    1. Verscheure S, Massion PB, Verschuren F, Damas P, Magder S. Volumetric capnography: lessons from the past and current clinical applications. Crit Care 20: 184, 2016. doi:10.1186/s13054-016-1377-3.
    1. Fernandes TM, Alotaibi M, Strozza DM, Stringer WW, Porszasz J, Faulkner GG, Castro CF, Tran DA, Morris TA. Dyspnea postpulmonary embolism from physiological dead space proportion and stroke volume defects during exercise. Chest 157: 936–944, 2020. doi:10.1016/j.chest.2019.10.047.
    1. Lambert LL, Baldwin MB, Gonzalez CV, Lowe GR, Willis JR. Accuracy of transcutaneous CO2 values compared with arterial and capillary blood gases. Respir Care 63: 907–912, 2018. doi:10.4187/respcare.05936.
    1. Sridhar MK, Carter R, Moran F, Banham SW. Use of a combined oxygen and carbon dioxide transcutaneous electrode in the estimation of gas exchange during exercise. Thorax 48: 643–647, 1993. doi:10.1136/thx.48.6.643.
    1. Stege G, van den Elshout FJ, Heijdra YF, van de Ven MJ, Dekhuijzen PN, Vos PJ. Accuracy of transcutaneous carbon dioxide tension measurements during cardiopulmonary exercise testing. Respiration 78: 147–153, 2009. doi:10.1159/000187631.
    1. Elbehairy AF, Webb KA, Laveneziana P, Domnik NJ, Neder JA, O'Donnell DE; Canadian Respiratory Research Network (CRRN). Acute bronchodilator therapy does not reduce wasted ventilation during exercise in COPD. Respir Physiol Neurobiol 252-253: 64–71, 2018. doi:10.1016/j.resp.2018.03.012.
    1. Marvin PM, Baker BJ, Dutt AK, Murphy ML, Bone RC. Physiologic effects of oral bronchodilators during rest and exercise in chronic obstructive pulmonary disease. Chest 84: 684–689, 1983. doi:10.1378/chest.84.6.684.

Source: PubMed

Подписаться