The Effector Function of Allergens

Stéphane Hazebrouck, Nicole Canon, Stephen C Dreskin, Stéphane Hazebrouck, Nicole Canon, Stephen C Dreskin

Abstract

Allergens are antigens that generate an IgE response (sensitization) in susceptible individuals. The allergenicity of an allergen can be thought of in terms of its ability to sensitize as well as its ability to cross-link IgE/IgE receptor complexes on mast cells and basophils leading to release of preformed and newly formed mediators (effector activity). The identity of the allergens responsible for sensitization may be different from those that elicit an allergic response. Effector activity is determined by (1) the amount of specific IgE (sIgE) and in some circumstances the ratio of sIgE to total IgE, (2) the number of high affinity receptors for IgE (FcεR1) on the cell surface, (3) the affinity of binding of sIgE for its epitope and, in a polyclonal response, the collective avidity, (4) the number and spatial relationships of IgE binding epitopes on the allergen and (5) the presence of IgG that can bind to allergen and either block binding of sIgE and/or activate low affinity IgG receptors that activate intracellular inhibitory pathways. This review will discuss these important immunologic and physical properties that contribute to the effector activity of allergens.

Keywords: IgE; allergens; cross-linking; degranulation; effector function; epitope; fcepsilonR1; mast cells.

Conflict of interest statement

SCD has received grant support from the National Institutes of Health. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Hazebrouck, Canon and Dreskin.

References

    1. Pomes A, Davies JM, Gadermaier G, Hilger C, Holzhauser T, Lidholm J, et al. . WHO/IUIS allergen nomenclature: providing a common language. Mol Immunol. (2018) 100:3–13. 10.1016/j.molimm.2018.03.003
    1. Aalberse RC. Structural biology of allergens. J Allergy Clin Immunol. (2000) 106:228–38. 10.1067/mai.2000.108434
    1. Aalberse RC. Structural features of allergenic molecules. Chem Immunol Allergy. (2006) 91:134–46. 10.1159/000090277
    1. Traidl-Hoffmann C, Jakob T, Behrendt H. Determinants of allergenicity. J Allergy Clin Immunol. (2009) 123:558–66. 10.1016/j.jaci.2008.12.003
    1. Deifl S, Bohle B. Factors influencing the allergenicity and adjuvanticity of allergens. Immunotherapy. (2011) 3:881–93. 10.2217/imt.11.69
    1. Masilamani M, Commins S, Shreffler W. Determinants of food allergy. Immunol Allergy Clin North Am. (2012) 32:11–33. 10.1016/j.iac.2011.12.003
    1. Masthoff LJ, Hoff R, Verhoeckx KC, van Os-Medendorp H, Michelsen-Huisman A, Baumert JL, et al. . A systematic review of the effect of thermal processing on the allergenicity of tree nuts. Allergy. (2013) 68:983–93. 10.1111/all.12185
    1. Zhou Y, Wang JS, Yang XJ, Lin DH, Gao YF, Su YJ, et al. . Peanut allergy, allergen composition, and methods of reducing allergenicity: a review. Int J Food Sci. (2013) 2013:909140. 10.1155/2013/909140
    1. Costa J, Carrapatoso I, Oliveira MB, Mafra I. Walnut allergens: molecular characterization, detection and clinical relevance. Clin Exp Allergy. (2014) 44:319–41. 10.1111/cea.12267
    1. Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ. The allergenicity of genetically modified foods from genetically engineered crops: a narrative and systematic review. Ann Allergy Asthma Immunol. (2017) 119:214–22 e3. 10.1016/j.anai.2017.07.010
    1. Stephen JN, Sharp MF, Ruethers T, Taki A, Campbell DE, Lopata AL. Allergenicity of bony and cartilaginous fish - molecular and immunological properties. Clin Exp Allergy. (2017) 47:300–12. 10.1111/cea.12892
    1. Pekar J, Ret D, Untersmayr E. Stability of allergens. Mol Immunol. (2018) 100:14–20. 10.1016/j.molimm.2018.03.017
    1. Jin Y, Acharya HG, Acharya D, Jorgensen R, Gao H, Secord J, et al. . Advances in molecular mechanisms of wheat allergenicity in animal models: a comprehensive review. Molecules. (2019) 24:1142. 10.3390/molecules24061142
    1. Caraballo L, Valenta R, Puerta L, Pomes A, Zakzuk J, Fernandez-Caldas E, et al. . The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J. (2020) 13:100118. 10.1016/j.waojou.2020.100118
    1. Costa J, Bavaro SL, Benede S, Diaz-Perales A, Bueno-Diaz C, Gelencser E, et al. . Are physicochemical properties shaping the allergenic potency of plant allergens? Clin Rev Allergy Immunol. (2020). 10.1007/s12016-020-08810-9
    1. Costa J, Villa C, Verhoeckx K, Cirkovic-Velickovic T, Schrama D, Roncada P, et al. . Are physicochemical properties shaping the allergenic potency of animal allergens? Clin Rev Allergy Immunol. (2021). 10.1007/s12016-020-08826-1
    1. Smit JJ, Pennings MT, Willemsen K, van Roest M, van Hoffen E, Pieters RH. Heterogeneous responses and cross reactivity between the major peanut allergens Ara h 1, 2,3 and 6 in a mouse model for peanut allergy. Clin Transl Allergy. (2015) 5:13. 10.1186/s13601-015-0056-9
    1. Chruszcz M, Maleki SJ, Majorek KA, Demas M, Bublin M, Solberg R, et al. . Structural and immunologic characterization of Ara h 1, a major peanut allergen. J Biol Chem. (2011) 286:39318–27. 10.1074/jbc.M111.270132
    1. Guillon B, Bernard H, Drumare MF, Hazebrouck S, Adel-Patient K. Heat processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6. Mol Nutr Food Res. (2016) 60:2722–35. 10.1002/mnfr.201500923
    1. Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy. (2004) 34:583–90. 10.1111/j.1365-2222.2004.1923.x
    1. Blanc F, Adel-Patient K, Drumare MF, Paty E, Wal JM, Bernard H. Capacity of purified peanut allergens to induce degranulation in a functional in vitro assay: Ara h 2 and Ara h 6 are the most efficient elicitors. Clin Exp Allergy. (2009) 39:1277–85. 10.1111/j.1365-2222.2009.03294.x
    1. Porterfield HS, Murray KS, Schlichting DG, Chen X, Hansen KC, Duncan MW, et al. . Effector activity of peanut allergens: a critical role for Ara h 2, Ara h 6, and their variants. Clin Exp Allergy. (2009) 39:1099–108. 10.1111/j.1365-2222.2009.03273.x
    1. Chen X, Negi SS, Liao S, Gao V, Braun W, Dreskin SC. Conformational IgE epitopes of peanut allergens Ara h 2 and Ara h 6. Clin Exp Allergy. (2016) 46:1120–8. 10.1111/cea.12764
    1. Chen X, Wang Q, El-Mezayen R, Zhuang Y, Dreskin SC. Ara h 2 and Ara h 6 have similar allergenic activity and are substantially redundant. Int Arch Allergy Immunol. (2013) 160:251–8. 10.1159/000341642
    1. Bublin M, Kostadinova M, Radauer C, Hafner C, Szepfalusi Z, Varga EM, et al. . IgE cross-reactivity between the major peanut allergen Ara h 2 and the nonhomologous allergens Ara h 1 and Ara h 3. J Allergy Clin Immunol. (2013) 132:118–24. 10.1016/j.jaci.2013.01.022
    1. Bublin M, Breiteneder H. Cross-reactivities of non-homologous allergens. Allergy. (2020) 75:1019–22. 10.1111/all.14120
    1. Nesbit JB, Schein CH, Braun BA, Gipson SAY, Cheng H, Hurlburt BK, et al. . Epitopes with similar physicochemical properties contribute to cross reactivity between peanut and tree nuts. Mol Immunol. (2020) 122:223–31. 10.1016/j.molimm.2020.03.017
    1. Scheurer S, Toda M, Vieths S. What makes an allergen? Clin Exp Allergy. (2015) 45:1150–61. 10.1111/cea.12571
    1. Kulis M, Chen X, Lew J, Wang Q, Patel O, Murray KS, et al. . The 2S albumin allergens of Arachis hypogaea, Ara h 2 and Ara h 6, are the major elicitors of anaphylaxis and can effectively desensitize peanut-allergic mice. Clin Exp Allergy. (2012) 42:326–36. 10.1111/j.1365-2222.2011.03934.x
    1. de Groot H, van Swieten P, van Leeuwen J, Lind P, Aalberse RC. Monoclonal antibodies to the major feline allergen Fel d I. I. Serologic and biologic activity of affinity-purified Fel d I and of Fel d I-depleted extract. J Allergy Clin Immunol. (1988) 82:778–86. 10.1016/0091-6749(88)90079-6
    1. Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, et al. . EAACI molecular allergology user's guide. Pediatr Allergy Immunol. (2016) 27(Suppl. 23):1–250. 10.1111/pai.12563
    1. Torigoe C, Inman JK, Metzger H. An unusual mechanism for ligand antagonism. Science. (1998) 281:568–72. 10.1126/science.281.5376.568
    1. Kane P, Erickson J, Fewtrell C, Baird B, Holowka D. Cross-linking of IgE-receptor complexes at the cell surface: synthesis and characterization of a long bivalent hapten that is capable of triggering mast cells and rat basophilic leukemia cells. Mol Immunol. (1986) 23:783–90. 10.1016/0161-5890(86)90090-8
    1. Metzger H, Eglite S, Haleem-Smith H, Reischl I, Torigoe C. Quantitative aspects of signal transduction by the receptor with high affinity for IgE. Mol Immunol. (2002) 38:1207–11. 10.1016/S0161-5890(02)00065-2
    1. Ortega E, Schweitzer-Stenner R, Pecht I. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells. EMBO J. (1988) 7:4101–9. 10.1002/j.1460-2075.1988.tb03304.x
    1. Sil D, Lee JB, Luo D, Holowka D, Baird B. Trivalent ligands with rigid DNA spacers reveal structural requirements for IgE receptor signaling in RBL mast cells. ACS Chem Biol. (2007) 2:674–84. 10.1021/cb7001472
    1. Hamilton RG, Hemmer W, Nopp A, Kleine-Tebbe J. Advances in IgE testing for diagnosis of allergic disease. J Allergy Clin Immunol Pract. (2020) 8:2495–504. 10.1016/j.jaip.2020.07.021
    1. Hjort C, Schiotz PO, Ohlin M, Wurtzen PA, Christensen LH, Hoffmann HJ. The number and affinity of productive IgE pairs determine allergen activation of mast cells. J Allergy Clin Immunol. (2017) 140:1167–70 e2. 10.1016/j.jaci.2017.04.014
    1. Hemmings O, Niazi U, Kwok M, James LK, Lack G, Santos AF. Peanut diversity and specific activity are the dominant IgE characteristics for effector cell activation in children. J Allergy Clin Immunol. (2021) 148:495–505 e14. 10.1016/j.jaci.2021.02.029
    1. Dreskin SC, Goldsmith PK, Strober W, Zech LA, Gallin JI. Metabolism of immunoglobulin E in patients with markedly elevated serum immunoglobulin E levels. J Clin Invest. (1987) 79:1764–72. 10.1172/JCI113017
    1. Oettgen HC. Fifty years later: emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol. (2016) 137:1631–45. 10.1016/j.jaci.2016.04.009
    1. MacGlashan D, Jr. IgE and FcepsilonRI regulation. Clin Rev Allergy Immunol. (2005) 29:49–60. 10.1385/CRIAI:29:1:049
    1. MacGlashan D, Jr, Lichtenstein LM. Studies of antigen binding on human basophils. I. Antigen binding and functional consequences. J Immunol. (1983) 130:2330–6.
    1. Metzger H, Goldstein B, Kent U, Mao SY, Pribluda C, Pribluda V, et al. . Quantitative aspects of receptor aggregation. Adv Exp Med Biol. (1994) 365:175–83. 10.1007/978-1-4899-0987-9_18
    1. Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as regulators of mast cell and basophil functions in food allergy. Front Immunol. (2020) 11:603050. 10.3389/fimmu.2020.603050
    1. Xie L, Schroeder JT, Langdon JM, Sora-Scott RS, Kawakami T, MacDonald SM. Human IgE+ and IgE- are not equivalent to mouse highly cytokinergic IgE. J Allergy Clin Immunol. (2008) 121:1027–33. 10.1016/j.jaci.2007.12.1157
    1. Shade KC, Conroy ME, Washburn N, Kitaoka M, Huynh DJ, Laprise E, et al. . Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature. (2020) 582:265–70. 10.1038/s41586-020-2311-z
    1. Koppelman SJ, de Jong GA, Laaper-Ertmann M, Peeters KA, Knulst AC, Hefle SL, et al. . Purification and immunoglobulin E-binding properties of peanut allergen Ara h 6: evidence for cross-reactivity with Ara h 2. Clin Exp Allergy. (2005) 35:490–7. 10.1111/j.1365-2222.2005.02204.x
    1. Flinterman AE, van Hoffen E, den Hartog Jager CF, Koppelman S, Pasmans SG, Hoekstra MO, et al. . Children with peanut allergy recognize predominantly Ara h2 and Ara h6, which remains stable over time. Clin Exp Allergy. (2007) 37:1221–8. 10.1111/j.1365-2222.2007.02764.x
    1. Chen X, Zhuang Y, Wang Q, Moutsoglou D, Ruiz G, Yen SE, et al. . Analysis of the effector activity of Ara h 2 and Ara h 6 by selective depletion from a crude peanut extract. J Immunol Methods. (2011) 372:65–70. 10.1016/j.jim.2011.06.031
    1. Hazebrouck S, Guillon B, Paty E, Dreskin SC, Adel-Patient K, Bernard H. Variable IgE cross-reactivity between peanut 2S-albumins: the case for measuring IgE to both Ara h 2 and Ara h 6. Clin Exp Allergy. (2019) 49:1107–15. 10.1111/cea.13432
    1. Bohle B, Zwolfer B, Heratizadeh A, Jahn-Schmid B, Antonia YD, Alter M, et al. . Cooking birch pollen-related food: divergent consequences for IgE- and T cell-mediated reactivity in vitro and in vivo. J Allergy Clin Immunol. (2006) 118:242–9. 10.1016/j.jaci.2006.03.011
    1. Roth-Walter F, Berin MC, Arnaboldi P, Escalante CR, Dahan S, Rauch J, et al. . Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer's patches. Allergy. (2008) 63:882–90. 10.1111/j.1398-9995.2008.01673.x
    1. Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat Biotechnol. (1996) 14:1269–73. 10.1038/nbt1096-1269
    1. Koppelman SJ, Hefle SL, Taylor SL, de Jong GA. Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: a comparative in vitro study and partial characterization of digestion-resistant peptides. Mol Nutr Food Res. (2010) 54:1711–21. 10.1002/mnfr.201000011
    1. Murtagh GJ, Dumoulin M, Archer DB, Alcocer MJ. Stability of recombinant 2 S albumin allergens in vitro. Biochem Soc Trans. (2002) 30:913–5. 10.1042/bst0300913
    1. Moreno FJ, Clemente A. 2S albumin storage proteins: what makes them food allergens? Open Biochem J. (2008) 2:16–28. 10.2174/1874091X00802010016
    1. Prodic I, Stanic-Vucinic D, Apostolovic D, Mihailovic J, Radibratovic M, Radosavljevic J, et al. . Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides. Clin Exp Allergy. (2018) 48:731–40. 10.1111/cea.13113
    1. Koppelman SJ, Smits M, Tomassen M, de Jong GAH, Baumert J, Taylor SL, et al. . Release of major peanut allergens from their matrix under various pH and simulated saliva conditions-Ara h2 and Ara h6 are readily bio-accessible. Nutrients. (2018) 10:1281. 10.3390/nu10091281
    1. Dreskin SC, Koppelman SJ, Andorf S, Nadeau KC, Kalra A, Braun W, et al. . The importance of the 2S albumins for allergenicity and cross-reactivity of peanuts, tree nuts, and sesame seeds. J Allergy Clin Immunol. (2020) 147:1154–63. 10.1016/j.jaci.2020.11.004
    1. Bernard H, Turner PJ, Ah-Leung S, Ruiz-Garcia M, Clare Mills EN, Adel-Patient K. Circulating Ara h 6 as a marker of peanut protein absorption in tolerant and allergic humans following ingestion of peanut-containing foods. Clin Exp Allergy. (2020) 50:1093–102. 10.1111/cea.13706
    1. Bernard H, Ah-Leung S, Drumare MF, Feraudet-Tarisse C, Verhasselt V, Wal JM, et al. . Peanut allergens are rapidly transferred in human breast milk and can prevent sensitization in mice. Allergy. (2014) 69:888–97. 10.1111/all.12411
    1. JanssenDuijghuijsen LM, Wichers HJ, van Norren K, Keijer J, Baumert JL, de Jong GA, et al. . Detection of peanut allergen in human blood after consumption of peanuts is skewed by endogenous immunoglobulins. J Immunol Methods. (2017) 440:52–7. 10.1016/j.jim.2016.11.002
    1. Schocker F, Scharf A, Kull S, Jappe U. Detection of the peanut allergens Ara h 2 and Ara h 6 in human breast milk: development of 2 sensitive and specific sandwich ELISA assays. Int Arch Allergy Immunol. (2017) 174:17–25. 10.1159/000479388
    1. Apostolovic D, Stanic-Vucinic D, de Jongh HH, de Jong GA, Mihailovic J, Radosavljevic J, et al. . Conformational stability of digestion-resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity. Sci Rep. (2016) 6:29249. 10.1038/srep29249
    1. Baumert JL, Taylor SL, Koppelman SJ. Quantitative assessment of the safety benefits associated with increasing clinical peanut thresholds through immunotherapy. J Allergy Clin Immunol Pract. (2018) 6:457–65 e4. 10.1016/j.jaip.2017.05.006
    1. Palosuo K, Varjonen E, Nurkkala J, Kalkkinen N, Harvima R, Reunala T, et al. . Transglutaminase-mediated cross-linking of a peptic fraction of omega-5 gliadin enhances IgE reactivity in wheat-dependent, exercise-induced anaphylaxis. J Allergy Clin Immunol. (2003) 111:1386–92. 10.1067/mai.2003.1498
    1. Scherf KA, Brockow K, Biedermann T, Koehler P, Wieser H. Wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy. (2016) 46:10–20. 10.1111/cea.12640
    1. Ansley L, Bonini M, Delgado L, Del Giacco S, Du Toit G, Khaitov M, et al. . Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy. (2015) 70:1212–21. 10.1111/all.12677
    1. Foong RX, Giovannini M, du Toit G. Food-dependent exercise-induced anaphylaxis. Curr Opin Allergy Clin Immunol. (2019) 19:224–8. 10.1097/ACI.0000000000000531
    1. Munoz-Cano R, San Bartolome C, Casas-Saucedo R, Araujo G, Gelis S, Ruano-Zaragoza M, et al. . Immune-mediated mechanisms in cofactor-dependent food allergy and anaphylaxis: effect of cofactors in basophils and mast cells. Front Immunol. (2020) 11:623071. 10.3389/fimmu.2020.623071
    1. Christensen LH, Holm J, Lund G, Riise E, Lund K. Several distinct properties of the IgE repertoire determine effector cell degranulation in response to allergen challenge. J Allergy Clin Immunol. (2008) 122:298–304. 10.1016/j.jaci.2008.05.026
    1. Christensen LH, Riise E, Bang L, Zhang C, Lund K. Isoallergen variations contribute to the overall complexity of effector cell degranulation: effect mediated through differentiated IgE affinity. J Immunol. (2010) 184:4966–72. 10.4049/jimmunol.0904038
    1. Lund G, Willumsen N, Holm J, Christensen LH, Wurtzen PA, Lund K. Antibody repertoire complexity and effector cell biology determined by assays for IgE-mediated basophil and T-cell activation. J Immunol Methods. (2012) 383:4–20. 10.1016/j.jim.2012.05.021
    1. Bucaite G, Kang-Pettinger T, Moreira J, Gould HJ, James LK, Sutton BJ, et al. . Interplay between affinity and valency in effector cell degranulation: a model system with polcalcin allergens and human patient-derived IgE antibodies. J Immunol. (2019) 203:1693–700. 10.4049/jimmunol.1900509
    1. Gieras A, Linhart B, Roux KH, Dutta M, Khodoun M, Zafred D, et al. . IgE epitope proximity determines immune complex shape and effector cell activation capacity. J Allergy Clin Immunol. (2016) 137:1557–65. 10.1016/j.jaci.2015.08.055
    1. Albrecht M, Kuhne Y, Ballmer-Weber BK, Becker WM, Holzhauser T, Lauer I, et al. . Relevance of IgE binding to short peptides for the allergenic activity of food allergens. J Allergy Clin Immunol. (2009) 124:328–36:36 e1–6. 10.1016/j.jaci.2009.05.031
    1. Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, et al. . Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys. (1997) 342:244–53. 10.1006/abbi.1997.9998
    1. Santos AF, Barbosa-Morais NL, Hurlburt BK, Ramaswamy S, Hemmings O, Kwok M, et al. . IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2-specific IgE. Allergy. (2020) 75:2309–18. 10.1111/all.14301
    1. Suarez-Farinas M, Suprun M, Bahnson HT, Raghunathan R, Getts R, duToit G, et al. . Evolution of epitope-specific IgE and IgG4 antibodies in children enrolled in the LEAP trial. J Allergy Clin Immunol. (2021) 148:835–42. 10.1016/j.jaci.2021.01.030
    1. Suarez-Farinas M, Suprun M, Kearney P, Getts R, Grishina G, Hayward C, et al. . Accurate and reproducible diagnosis of peanut allergy using epitope mapping. Allergy. (2021) 76:3789–97. 10.1111/all.14905
    1. Suprun M, Sicherer SH, Wood RA, Jones SM, Leung DYM, Henning AK, et al. . Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol. (2020) 146:1080–8. 10.1016/j.jaci.2020.08.005
    1. Bogh KL, Nielsen H, Eiwegger T, Madsen CB, Mills EN, Rigby NM, et al. . IgE versus IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy. Mol Immunol. (2014) 58:169–76. 10.1016/j.molimm.2013.11.014
    1. Nesbit JB, Hurlburt BK, Schein CH, Cheng H, Maleki SJ. Ara h 1 structure is retained after roasting and is important for enhanced binding to IgE. Mol Nutr Food Res. (2012) 56:1739–47. 10.1002/mnfr.201100815
    1. Barre A, Borges JP, Culerrier R, Rouge P. Homology modelling of the major peanut allergen Ara h 2 and surface mapping of IgE-binding epitopes. Immunol Lett. (2005) 100:153–8. 10.1016/j.imlet.2005.03.014
    1. Barre A, Sordet C, Culerrier R, Rance F, Didier A, Rouge P. Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol Immunol. (2008) 45:1231–40. 10.1016/j.molimm.2007.09.014
    1. Otsu K, Guo R, Dreskin SC. Epitope analysis of Ara h 2 and Ara h 6: characteristic patterns of IgE-binding fingerprints among individuals with similar clinical histories. Clin Exp Allergy. (2015) 45:471–84. 10.1111/cea.12407
    1. Gieras A, Cejka P, Blatt K, Focke-Tejkl M, Linhart B, Flicker S, et al. . Mapping of conformational IgE epitopes with peptide-specific monoclonal antibodies reveals simultaneous binding of different IgE antibodies to a surface patch on the major birch pollen allergen, Bet v 1. J Immunol. (2011) 186:5333–44. 10.4049/jimmunol.1000804
    1. Devanaboyina SC, Cornelius C, Lupinek C, Fauland K, Dall'Antonia F, Nandy A, et al. . High-resolution crystal structure and IgE recognition of the major grass pollen allergen Phl p 3. Allergy. (2014) 69:1617–28. 10.1111/all.12511
    1. Longo V, Costa MA, Cibella F, Cuttitta G, La Grutta S, Colombo P. Multiple IgE recognition on the major allergen of the Parietaria pollen Par j 2. Mol Immunol. (2015) 63:412–9. 10.1016/j.molimm.2014.09.012
    1. Miyaji K, Yurimoto T, Saito A, Yasueda H, Takase Y, Shimakura H, et al. . Analysis of conformational and sequential IgE epitopes on the major allergen Cry j 2 of Japanese cedar (Cryptomeria japonica) pollen in humans by using monoclonal antibodies for Cry j 2. J Clin Immunol. (2013) 33:977–83. 10.1007/s10875-013-9880-7
    1. Linhart B, Valenta R. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives. Vaccine. (2012) 30:4328–35. 10.1016/j.vaccine.2011.11.011
    1. Apostolovic D, Luykx D, Warmenhoven H, Verbart D, Stanic-Vucinic D, de Jong GA, et al. . Reduction and alkylation of peanut allergen isoforms Ara h 2 and Ara h 6; characterization of intermediate- and end products. Biochim Biophys Acta. (2013) 1834:2832–42. 10.1016/j.bbapap.2013.10.004
    1. Bencharitiwong R, van der Kleij HP, Koppelman SJ, Nowak-Wegrzyn A. Effect of chemical modifications on allergenic potency of peanut proteins. Allergy Asthma Proc. (2015) 36:185–91. 10.2500/aap.2015.36.3840
    1. Hazebrouck S, Guillon B, Drumare MF, Paty E, Wal JM, Bernard H. Trypsin resistance of the major peanut allergen Ara h 6 and allergenicity of the digestion products are abolished after selective disruption of disulfide bonds. Mol Nutr Food Res. (2012) 56:548–57. 10.1002/mnfr.201100614
    1. van Hoffen E, van der Kleij H, Jager SDH, Knol EF, Opstelten DJ. Effect of modificaion of peanut conglutin on IgE and T cell reactivity in adults with peanut allergy. Clin Transl Allergy. (2011) 1(Suppl 1):016. 10.1186/2045-7022-1-S1-O16
    1. Starkl P, Felix F, Krishnamurthy D, Stremnitzer C, Roth-Walter F, Prickett SR, et al. . An unfolded variant of the major peanut allergen Ara h 2 with decreased anaphylactic potential. Clin Exp Allergy. (2012) 42:1801–12. 10.1111/cea.12031
    1. Bernard H, Guillon B, Drumare MF, Paty E, Dreskin SC, Wal JM, et al. . Allergenicity of peanut component Ara h 2: Contribution of conformational versus linear hydroxyproline-containing epitopes. J Allergy Clin Immunol. (2015) 135:1267–74 e1–8. 10.1016/j.jaci.2014.10.025
    1. Tscheppe A, Palmberger D, van Rijt L, Kalic T, Mayr V, Palladino C, et al. . Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. J Allergy Clin Immunol. (2020) 145:229–38. 10.1016/j.jaci.2019.08.036
    1. Aalberse RC, Crameri R. IgE-binding epitopes: a reappraisal. Allergy. (2011) 66:1261–74. 10.1111/j.1398-9995.2011.02656.x
    1. Chang X, Zha L, Wallimann A, Mohsen MO, Krenger P, Liu X, et al. . Low-affinity but high-avidity interactions may offer an explanation for IgE-mediated allergen cross-reactivity. Allergy. (2021) 76:2565–74. 10.1111/all.14864
    1. Flicker S, Steinberger P, Ball T, Krauth MT, Verdino P, Valent P, et al. . Spatial clustering of the IgE epitopes on the major timothy grass pollen allergen Phl p 1: importance for allergenic activity. J Allergy Clin Immunol. (2006) 117:1336–43. 10.1016/j.jaci.2006.02.012
    1. Burton OT, Tamayo JM, Stranks AJ, Koleoglou KJ, Oettgen HC. Allergen-specific IgG antibody signaling through FcgammaRIIb promotes food tolerance. J Allergy Clin Immunol. (2018) 141:189–201 e3. 10.1016/j.jaci.2017.03.045
    1. Eckl-Dorna J, Villazala-Merino S, Linhart B, Karaulov AV, Zhernov Y, Khaitov M, et al. . Allergen-specific antibodies regulate secondary allergen-specific immune responses. Front Immunol. (2018) 9:3131. 10.3389/fimmu.2018.03131

Source: PubMed

Подписаться