FGFR1 and NTRK3 actionable alterations in "Wild-Type" gastrointestinal stromal tumors

Eileen Shi, Juliann Chmielecki, Chih-Min Tang, Kai Wang, Michael C Heinrich, Guhyun Kang, Christopher L Corless, David Hong, Katherine E Fero, James D Murphy, Paul T Fanta, Siraj M Ali, Martina De Siena, Adam M Burgoyne, Sujana Movva, Lisa Madlensky, Gregory M Heestand, Jonathan C Trent, Razelle Kurzrock, Deborah Morosini, Jeffrey S Ross, Olivier Harismendy, Jason K Sicklick, Eileen Shi, Juliann Chmielecki, Chih-Min Tang, Kai Wang, Michael C Heinrich, Guhyun Kang, Christopher L Corless, David Hong, Katherine E Fero, James D Murphy, Paul T Fanta, Siraj M Ali, Martina De Siena, Adam M Burgoyne, Sujana Movva, Lisa Madlensky, Gregory M Heestand, Jonathan C Trent, Razelle Kurzrock, Deborah Morosini, Jeffrey S Ross, Olivier Harismendy, Jason K Sicklick

Abstract

Background: About 10-15% of adult, and most pediatric, gastrointestinal stromal tumors (GIST) lack mutations in KIT, PDGFRA, SDHx, or RAS pathway components (KRAS, BRAF, NF1). The identification of additional mutated genes in this rare subset of tumors can have important clinical benefit to identify altered biological pathways and select targeted therapies.

Methods: We performed comprehensive genomic profiling (CGP) for coding regions in more than 300 cancer-related genes of 186 GISTs to assess for their somatic alterations.

Results: We identified 24 GIST lacking alterations in the canonical KIT/PDGFRA/RAS pathways, including 12 without SDHx alterations. These 24 patients were mostly adults (96%). The tumors had a 46% rate of nodal metastases. These 24 GIST were more commonly mutated at 7 genes: ARID1B, ATR, FGFR1, LTK, SUFU, PARK2 and ZNF217. Two tumors harbored FGFR1 gene fusions (FGFR1-HOOK3, FGFR1-TACC1) and one harbored an ETV6-NTRK3 fusion that responded to TRK inhibition. In an independent sample set, we identified 5 GIST cases lacking alterations in the KIT/PDGFRA/SDHx/RAS pathways, including two additional cases with FGFR1-TACC1 and ETV6-NTRK3 fusions.

Conclusions: Using patient demographics, tumor characteristics, and CGP, we show that GIST lacking alterations in canonical genes occur in younger patients, frequently metastasize to lymph nodes, and most contain deleterious genomic alterations, including gene fusions involving FGFR1 and NTRK3. If confirmed in larger series, routine testing for these translocations may be indicated for this subset of GIST. Moreover, these findings can be used to guide personalized treatments for patients with GIST. Trial registration NCT 02576431. Registered October 12, 2015.

Trial registration: ClinicalTrials.gov NCT02576431.

Keywords: ETV6–NTRK3; FGFR1; GIST; Gene sequencing; Mutation.

Figures

Fig. 1
Fig. 1
Types of Genomic Alterations Detected on Broad Genetic Profiling of Wild-Type GIST. Bar graph demonstrates the types of genomic alterations identified in WT GIST as determined by CGP). Percentages and total numbers (N) of mutations are indicated
Fig. 2
Fig. 2
Deleterious genomic alterations, genes and tumor sites in Wild-Type GIST. Matrix demonstrating genes recurrently mutated in WT GIST patients, with each column representing an individual patient. VUS missense mutations are displayed only if they are predicted to affect gene function by 2 or more algorithms (see “Methods” section). Genes were prioritized on the basis of predicted damaging effect. The table header indicates GIST tissue of origin (blue), positive node status (red), positive metastic status (purple), qWT status (i.e. tested for SDHx—black) missing data (grey). The number of mutated patients for each gene (red scale in row header) is indicated
Fig. 3
Fig. 3
Kinase fusions identified in WT GIST samples. Three separate fusions involving the N-terminus of FGFR1 (a) and the C-terminus of NTRK3 (b) were identified. The FGFR1 fusions (a) were similar in structure to reported fusions and contained exons 2-17 fused with exons 5-22 of HOOK3 or exons 7-13 of TACC1. Intact coiled-coil motifs were present in both fusion partners and likely facilitate dimerization. Note that exon 1 of FGFR1 is non-coding and therefore excluded from the protein diagrams. The NTRK3 fusion (b) contained exons 1-5 of ETV6 and exons 14-19, which included the complete kinase domain. Although the portion of ETV6 present in the fusion lacked the DNA-binding domain, a Pointed (PNT) was conserved. This region is composed of 5-helix bundle involved in protein–protein interactions and may facilitate dimerization of this fusion. All diagrams are drawn to scale
Fig. 4
Fig. 4
Radiological response of a GIST possessing an ETV6–NTRK3 fusion following treatment with LOXO-101, a selective TRK inhibitor. A 55-year old male with a T3N0M1 small intestine GIST had progression of disease on five lines of tyrosine kinase inhibitors targeting KIT prior to identification of an ETV6–NTRK3 fusion in the tumor. He was enrolled on a Phase I clinical trial of oral LOXO-101 (Loxo Oncology, Stamford, CT), a selective TRK inhibitor. As compared to baseline PET/CT images (a), the tumors had decreased size and FDG-uptake at week 8 (b). At 4 months, the patient had ongoing partial response (44%) according to RECIST 1.1 criteria

References

    1. Ma GL, Murphy JD, Martinez ME, Sicklick JK. Epidemiology of gastrointestinal stromal tumors in the era of histology codes: results of a population-based study. Cancer Epidemiol Biomarkers Prev. 2015;24(1):298–302. doi: 10.1158/1055-9965.EPI-14-1002.
    1. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11(12):865–878.
    1. Rubin BP, Heinrich MC, Corless CL. Gastrointestinal stromal tumour. Lancet. 2007;369(9574):1731–1741. doi: 10.1016/S0140-6736(07)60780-6.
    1. Fanta PT, Sicklick JK, Betz BL, Peterson MR. In Vivo Imatinib Sensitivity in a Patient With GI Stromal Tumor Bearing a PDGFRA Deletion DIM842-844. J Clin Oncol. 2015;33(8):e41–e44. doi: 10.1200/JCO.2013.50.0082.
    1. Liegl-Atzwanger B, Fletcher JA, Fletcher CDM. Gastrointestinal stromal tumors. Virchows Archiv. 2010;456(2):111–127. doi: 10.1007/s00428-010-0891-y.
    1. Agaram NP, Wong GC, Guo T, Maki RG, Singer S, Dematteo RP, Besmer P, Antonescu CR. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosom Cancer. 2008;47(10):853–859. doi: 10.1002/gcc.20589.
    1. Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, George S, Trent JC, von Mehren M, Wright JA, Schiffman JD, et al. Molecular subtypes of KIT/PDGFRA Wild-Type gastrointestinal stromal tumors: a report from the national institutes of health gastrointestinal stromal tumor clinic. JAMA Oncol. 2016;2(7):922–928. doi: 10.1001/jamaoncol.2016.0256.
    1. Pantaleo MA, Nannini M, Corless CL, Heinrich MC. Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways. Cancer Med. 2015;4(1):101–103. doi: 10.1002/cam4.325.
    1. Sicklick JK, Lopez NE. Optimizing surgical and imatinib therapy for the treatment of gastrointestinal stromal tumors. J Gastrointest Surg. 2013;17:1997–2000. doi: 10.1007/s11605-013-2243-0.
    1. Pantaleo MA, Nannini M, Corless CL, Heinrich MC. Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways. Cancer Med. 2015;4(1):101–103. doi: 10.1002/cam4.325.
    1. Nannini M, Astolfi A, Urbini M, Indio V, Santini D, Heinrich MC, Corless CL, Ceccarelli C, Saponara M, Mandrioli A, et al. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST) BMC Cancer. 2014;14:685. doi: 10.1186/1471-2407-14-685.
    1. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–1031. doi: 10.1038/nbt.2696.
    1. Liu X, Jian X, Boerwinkle E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32(8):894–899. doi: 10.1002/humu.21517.
    1. Liu X, Jian X, Boerwinkle E. dbNSFP v2.0 a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 2013;34(9):2393–2402. doi: 10.1002/humu.22376.
    1. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–291. doi: 10.1038/nature19057.
    1. Grasso C, Butler T, Rhodes K, Quist M, Neff TL, Moore S, Tomlins SA, Reinig E, Beadling C, Andersen M, et al. Assessing copy number alterations in targeted, amplicon-based next-generation sequencing data. J Mol Diagn. 2015;17(1):53–63. doi: 10.1016/j.jmoldx.2014.09.008.
    1. Beadling C, Wald AI, Warrick A, Neff TL, Zhong S, Nikiforov YE, Corless CL, Nikiforova MN. A multiplexed amplicon approach for detecting gene fusions by next-generation sequencing. J Mol Diagn. 2016;18(2):165–175. doi: 10.1016/j.jmoldx.2015.10.002.
    1. Rossi S, Sbaraglia M, Dell’Orto MC, Gasparotto D, Cacciatore M, Boscato E, Carraro V, Toffolatti L, Gallina G, Niero M, et al. Concomitant KIT/BRAF and PDGFRA/BRAF mutations are rare events in gastrointestinal stromal tumors. Oncotarget. 2016;7(21):30109–30118.
    1. Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Investig. 2001;108(6):779–784. doi: 10.1172/JCI200113992.
    1. Prazeres H, Torres J, Rodrigues F, Pinto M, Pastoriza MC, Gomes D, Cameselle-Teijeiro J, Vidal A, Martins TC, Sobrinho-Simões M, et al. Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene. 2011;30(11):1302–1317. doi: 10.1038/onc.2010.512.
    1. Ni S, Hu J, Duan Y, Shi S, Li R, Wu H, Qu Y, Li Y. Down expression of LRP1B promotes cell migration via RhoA/Cdc42 pathway and actin cytoskeleton remodeling in renal cell cancer. Cancer Sci. 2013;104(7):817–825. doi: 10.1111/cas.12157.
    1. Liu C-X, Musco S, Lisitsina NM, Forgacs E, Minna JD, Lisitsyn NA. LRP-DIT, a putative endocytic receptor gene, is frequently inactivated in non-small cell lung cancer cell lines. Cancer Res. 2000;60(7):1961–1967.
    1. Cowin PA, George J, Fereday S, Loehrer E, Van Loo P, Cullinane C, Etemadmoghadam D, Ftouni S, Galletta L, Anglesio MS, et al. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin. Cancer Res. 2012;72(16):4060–4073. doi: 10.1158/0008-5472.CAN-12-0203.
    1. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–1081. doi: 10.1093/carcin/bgp127.
    1. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012;337(6099):1231–1235. doi: 10.1126/science.1220834.
    1. Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E, Raheja R, Tan IL, Turcan S, Veeriah S, Meng S, et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet. 2014;46(6):588–594. doi: 10.1038/ng.2981.
    1. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, Janakiraman M, Schultz N, Hanrahan AJ, Pao W, et al. Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet. 2010;42(1):77–82. doi: 10.1038/ng.491.
    1. Vasileiou G, Ekici AB, Uebe S, Zweier C, Hoyer J, Engels H, Behrens J, Reis A, Hadjihannas MV. Chromatin-Remodeling-Factor ARID1B Represses Wnt/beta-Catenin Signaling. Am J Hum Genet. 2015;97(3):445–456. doi: 10.1016/j.ajhg.2015.08.002.
    1. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11(7):481–492. doi: 10.1038/nrc3068.
    1. Shiotani B, Zou L. ATR signaling at a glance. J Cell Sci. 2009;122(Pt 3):301–304. doi: 10.1242/jcs.035105.
    1. Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development. 2010;137(10):1721–1729. doi: 10.1242/dev.044586.
    1. Merchant JL, Saqui-Salces M. Inhibition of Hedgehog signaling in the gastrointestinal tract: targeting the cancer microenvironment. Cancer Treat Rev. 2014;40(1):12–21. doi: 10.1016/j.ctrv.2013.08.003.
    1. Krig SR, Miller JK, Frietze S, Beckett LA, Neve RM, Farnham PJ, Yaswen PI, Sweeney CA. ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Oncogene. 2010;29(40):5500–5510. doi: 10.1038/onc.2010.289.
    1. Zhang ZC, Zheng LQ, Pan LJ, Guo JX, Yang GS. ZNF217 is overexpressed and enhances cell migration and invasion in colorectal carcinoma. Asian Pac J Cancer Prev. 2015;16(6):2459–2463. doi: 10.7314/APJCP.2015.16.6.2459.
    1. Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000;14(14):1810–1823.
    1. Ghetu AF, Corcoran CM, Cerchietti L, Bardwell VJ, Melnick A, Privé GG. Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell. 2008;29(3):384–391. doi: 10.1016/j.molcel.2007.12.026.
    1. Walker SR, Liu S, Xiang M, Nicolais M, Hatzi K, Giannopoulou E, Elemento O, Cerchietti L, Melnick A, Frank DA. The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene. 2015;34(9):1073–1082. doi: 10.1038/onc.2014.61.
    1. Cerchietti LC, Yang SN, Shaknovich R, Hatzi K, Polo JM, Chadburn A, Dowdy SF, Melnick A. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood. 2009;113(15):3397–3405. doi: 10.1182/blood-2008-07-168773.
    1. Brenca M, Rossi S, Polano M, Gasparotto D, Zanatta L, Racanelli D, Valori L, Lamon S, Dei Tos AP, Maestro R. Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST. J Pathol. 2015;238:543–549. doi: 10.1002/path.4677.
    1. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292–15297. doi: 10.1074/jbc.271.25.15292.
    1. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006;281(23):15694–15700. doi: 10.1074/jbc.M601252200.
    1. Hong DS, Brose MS, Doebele RC, Shaw AT, Dowlati A, Bauer TM, Farago AF, Estrada-Bernal A, Le AT, Cox MC et al. Clinical safety and activity from a phase 1 study of LOXO-101, a Selective TRK/A/B/C inhibitor, in solid-tumor patients with NTRK gene fusions. Proceedings of the 2015 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2015, Abstr PR13; 2015 Nov 5-9; Boston, Massachusetts.
    1. Gasparotto D, Rossi S, Polano M, Tamborini E, Lorenzetto E, Sbaraglia M, Mondello A, Massani M, Lamon S, Bracci R et al. Quadruple-negative GIST is a sentinel for unrecognized neurofibromatosis type 1 syndrome. Clin Cancer Res. 2016. PMID:27390349.
    1. Tang CM, Lee TE, Syed SA, Burgoyne AM, Leonard SY, Gao F, Chan JC, Shi E, Chmielecki J, Morosini D et al. Hedgehog pathway dysregulation contributes to the pathogenesis of human gastrointestinal stromal tumors via GLI-mediated activation of KIT expression. Oncotarget. 2016. PMID:27793025.
    1. Wu Y-M, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin S-F, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer discovery. 2013;3(6):636–647. doi: 10.1158/-13-0050.
    1. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science (New York, NY) 2012;337(6099):1231–1235. doi: 10.1126/science.1220834.
    1. Cohen NA, Zeng S, Seifert AM, Kim TS, Sorenson EC, Greer JB, Beckman MJ, Santamaria-Barria JA, Crawley MH, Green BL, et al. Pharmacological inhibition of KIT Activates MET signaling in gastrointestinal stromal tumors. Cancer Res. 2015;75(10):2061–2070. doi: 10.1158/0008-5472.CAN-14-2564.
    1. Taipale M, Krykbaeva I, Whitesell L, Santagata S, Zhang J, Liu Q, Gray NS, Lindquist S. Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells. Nat Biotechnol. 2013;31(7):630–637. doi: 10.1038/nbt.2620.
    1. Surveillance, Epidemiology, and End Results (SEER) Program () SEER*Stat Database: Incidence–SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2013 Sub (2000–2011) <Katrina/Rita Population Adjustment>- Linked To County Attributes–Total U.S., 1969–2012 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, released April 2014 (updated 5/7/2014), based on the November 2013 submission.

Source: PubMed

Подписаться