WT1 peptide vaccine in Montanide in contrast to poly ICLC, is able to induce WT1-specific immune response with TCR clonal enrichment in myeloid leukemia

Hongtao Liu, Yuanyuan Zha, Noura Choudhury, Gregory Malnassy, Noreen Fulton, Margaret Green, Jae-Hyun Park, Yusuke Nakamura, Richard A Larson, Andres M Salazar, Olatoyosi Odenike, Thomas F Gajewski, Wendy Stock, Hongtao Liu, Yuanyuan Zha, Noura Choudhury, Gregory Malnassy, Noreen Fulton, Margaret Green, Jae-Hyun Park, Yusuke Nakamura, Richard A Larson, Andres M Salazar, Olatoyosi Odenike, Thomas F Gajewski, Wendy Stock

Abstract

Background: The optimal strategy for vaccination to induce CD8+ T cell responses against WT1 is not known.

Methods: A pilot randomized study in HLA-A02+ patients to receive vaccination with WT1 in Montanide or in poly ICLC, a TLR3 agonist, to explore the novel immune adjuvant was conducted. Seven patients were randomized. Four patients received WT1 in Montanide, and three with WT1 in poly ICLC. Five patients were in morphologic remission and two had residual morphologic disease at the study entry.

Results: All patients finished the induction phase without any major toxicity except mild transient local injection reaction. One patient on the Montanide arm developed aseptic ulceration at two vaccine sites which healed without antibiotics. Three of 4 patients on the Montanide arm had a decreased expression of WT1 after WT1 vaccination, and two of them demonstrated generation of WT1-specific cytotoxic CD8+ T cell responses with biased TCR beta chain enrichment. In contrast, no obvious WT1-specific immune responses were detected in two patients on the poly ICLC arm, nor was there clonal enrichment by TCR alpha/beta sequencing; however, these patients did also have decreased WT1 expression and remained in remission several years after the initiation of treatment.

Conclusions: WT1 peptide vaccine with Montanide as an adjuvant induces detectable WT1-specific CD8+ T cell responses with clonal TCR enrichment, which may be capable of controlling leukemia recurrence in the setting of minimal residual disease. Poly ICLC may induce anti-leukemic activity in the absence of detectable WT1 specific CD8+ T cell responses.Trial registration NCT01842139, 7/3/2012 retrospectively registered; https://ichgcp.net/clinical-trials-registry/NCT01842139.

Keywords: AML; TLR3; Vaccine; WT1.

Figures

Fig. 1
Fig. 1
Clinical trial schema
Fig. 2
Fig. 2
Both WT1 vaccine in Montanide and poly ICLC could decrease WT1 level during the vaccination; and WT1 level is correlated with disease progression
Fig. 3
Fig. 3
WT1-specific CD8 T cells responses were detected in two patients on the Montanide arm by ELISPOT but not on the poly ICLC arm
Fig. 4
Fig. 4
Clonal enrichment of CD8 T cells was detected in three patients on Montanide arm (Pt 005, Pt 006 and Pt 007) by TCR deep sequencing but not in the patient (Pt 004) on the poly ICLC arm. For Pt 006, Pt 007, and Pt 004; TCR sequencing was done prior to vaccination, after 3 and 6 cycle vaccination; for Pt 006, TCR sequencing was done prior to vaccination, after 3, 6, 9 and 12 vaccination

References

    1. Neller MA, Lopez JA, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol. 2008;20(5):286–295. doi: 10.1016/j.smim.2008.09.006.
    1. Barrett AJ, Rezvani K. Translational mini-review series on vaccines: peptide vaccines for myeloid leukaemias. Clin Exp Immunol. 2007;148(2):189–198. doi: 10.1111/j.1365-2249.2007.03383.x.
    1. Maurer U, Brieger J, Weidmann E, Mitrou PS, Hoelzer D, Bergmann L. The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp Hematol. 1997;25(9):945–950.
    1. Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ. A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene. 1996;12(5):1005–1014.
    1. Yamagami T, Sugiyama H, Inoue K, et al. Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood. 1996;87(7):2878–2884.
    1. Nishida S, Hosen N, Shirakata T, et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood. 2006;107(8):3303–3312. doi: 10.1182/blood-2005-04-1656.
    1. Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol. 2003;21(10):1988–1995. doi: 10.1200/JCO.2003.10.503.
    1. Cilloni D, Gottardi E, De Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115–2121. doi: 10.1038/sj.leu.2402675.
    1. Keilholz U, Letsch A, Busse A, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–6548. doi: 10.1182/blood-2009-02-202598.
    1. Oka Y, Tsuboi A, Taguchi T, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101(38):13885–13890. doi: 10.1073/pnas.0405884101.
    1. Rezvani K, Yong AS, Mielke S, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–242. doi: 10.1182/blood-2007-08-108241.
    1. Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia. 2004;18(1):165–166. doi: 10.1038/sj.leu.2403186.
    1. Hashii Y, Sato-Miyashita E, Matsumura R, et al. WT1 peptide vaccination following allogeneic stem cell transplantation in pediatric leukemic patients with high risk for relapse: successful maintenance of durable remission. Leukemia. 2012;26(3):530–532. doi: 10.1038/leu.2011.226.
    1. Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6:36. doi: 10.3389/fimmu.2015.00036.
    1. Salem ML, Kadima AN, Cole DJ, Gillanders WE. Defining the antigen-specific T-cell response to vaccination and poly (I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother. 2005;28(3):220–228. doi: 10.1097/01.cji.0000156828.75196.0d.
    1. Lacour J, Lacour F, Spira A, et al. Adjuvant treatment with polyadenylic–polyuridylic acid (Polya. Polyu) in operable breast cancer. Lancet. 1980;2(8187):161–164. doi: 10.1016/S0140-6736(80)90057-4.
    1. Khan AL, Heys SD, Eremin O. Synthetic polyribonucleotides: current role and potential use in oncological practice. Eur J Surg Oncol. 1995;21(2):224–227. doi: 10.1016/S0748-7983(95)90930-3.
    1. Inoue H, Park JH, Kiyotani K, et al. Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. Oncoimmunology. 2016;5(9):e1204507. doi: 10.1080/2162402X.2016.1204507.
    1. Rezvani K, Brenchley JM, Price DA, et al. T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res. 2005;11(24 Pt 1):8799–8807. doi: 10.1158/1078-0432.CCR-05-1314.
    1. Rezvani K, Yong AS, Mielke S, et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica. 2011;96(3):432–440. doi: 10.3324/haematol.2010.031674.
    1. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816–825. doi: 10.1038/sj.cdd.4401850.
    1. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299(5609):1033–1036. doi: 10.1126/science.1078231.
    1. Salazar AM, Levy HB, Ondra S, et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic–polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery. 1996;38(6):1096–1103. doi: 10.1227/00006123-199606000-00006.
    1. Rosenfeld MR, Chamberlain MC, Grossman SA, et al. A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro-Oncology. 2010;12(10):1071–1077. doi: 10.1093/neuonc/noq071.
    1. Sabbatini P, Tsuji T, Ferran L, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497–6508. doi: 10.1158/1078-0432.CCR-12-2189.
    1. Rapoport AP, Aqui NA, Stadtmauer EA, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. 2014;20(5):1355–1365. doi: 10.1158/1078-0432.CCR-13-2817.
    1. Tanaka-Harada Y, Kawakami M, Oka Y, et al. Biased usage of BV gene families of T-cell receptors of WT1 (Wilms’ tumor gene)-specific CD8+ T cells in patients with myeloid malignancies. Cancer Sci. 2010;101(3):594–600. doi: 10.1111/j.1349-7006.2009.01453.x.
    1. Ochsenreither S, Fusi A, Geikowski A, et al. Wilms’ tumor protein 1 (WT1) peptide vaccination in AML patients: predominant TCR CDR3beta sequence associated with remission in one patient is detectable in other vaccinated patients. Cancer Immunol Immunother. 2012;61(3):313–322. doi: 10.1007/s00262-011-1099-y.
    1. Stauss HJ, Thomas S, Cesco-Gaspere M, et al. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells. Blood Cells Mol Dis. 2008;40(1):113–116. doi: 10.1016/j.bcmd.2007.06.018.
    1. Xue SA, Gao L, Hart D, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood. 2005;106(9):3062–3067. doi: 10.1182/blood-2005-01-0146.
    1. Chapuis AG, Ragnarsson GB, Nguyen HN, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013;5(174):174ra127. doi: 10.1126/scitranslmed.3004916.

Source: PubMed

Подписаться