Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities

Yuchao Li, Chengzhu Liao, Sie Chin Tjong, Yuchao Li, Chengzhu Liao, Sie Chin Tjong

Abstract

This article reviews the recent developments in the synthesis, antibacterial activity, and visible-light photocatalytic bacterial inactivation of nano-zinc oxide. Polycrystalline wurtzite ZnO nanostructures with a hexagonal lattice having different shapes can be synthesized by means of vapor-, liquid-, and solid-phase processing techniques. Among these, ZnO hierarchical nanostructures prepared from the liquid phase route are commonly used for antimicrobial activity. In particular, plant extract-mediated biosynthesis is a single step process for preparing nano-ZnO without using surfactants and toxic chemicals. The phytochemical molecules of natural plant extracts are attractive agents for reducing and stabilizing zinc ions of zinc salt precursors to form green ZnO nanostructures. The peel extracts of certain citrus fruits like grapefruits, lemons and oranges, acting as excellent chelating agents for zinc ions. Furthermore, phytochemicals of the plant extracts capped on ZnO nanomaterials are very effective for killing various bacterial strains, leading to low minimum inhibitory concentration (MIC) values. Bioactive phytocompounds from green ZnO also inhibit hemolysis of Staphylococcus aureus infected red blood cells and inflammatory activity of mammalian immune system. In general, three mechanisms have been adopted to explain bactericidal activity of ZnO nanomaterials, including direct contact killing, reactive oxygen species (ROS) production, and released zinc ion inactivation. These toxic effects lead to the destruction of bacterial membrane, denaturation of enzyme, inhibition of cellular respiration and deoxyribonucleic acid replication, causing leakage of the cytoplasmic content and eventual cell death. Meanwhile, antimicrobial activity of doped and modified ZnO nanomaterials under visible light can be attributed to photogeneration of ROS on their surfaces. Thus particular attention is paid to the design and synthesis of visible light-activated ZnO photocatalysts with antibacterial properties.

Keywords: antimicrobial activity; contact killing; free radicals; hemolysis; heterostructure; photocatalytic activity; phytocompounds; semiconducting oxide; synthesis; zinc ion.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Antibacterial mechanisms of different nanoparticles (NPs) in fighting MDR bacteria. AuNPs: gold NPs, CuONPs: copper oxide NPs; AgNPs: silver NPs; Fe3O4NPs: iron oxide NPs, and ZnONPs: zinc oxide NPs. Reproduced from [16] under the terms of the Creative Commons Attribution License (CC BY).
Figure 2
Figure 2
Schematic representation showing versatile applications of ZnO nanoparticles in chemical, electronic, textile, pharmaceutical and cosmetic industries. Reproduced from [35] the terms of the Creative Commons Attribution License (CC BY).
Figure 3
Figure 3
(a) UV-visible spectra of pure ZnO, Mn-doped ZnO and Co-doped ZnO nanowires, and (b) Tauc plots of (αhv)2 versus hv for ZnO-based nanowires showing the reduction of bandgap energy through transition metal doping. (c) The generation of superoxide anion and hydroxyl radicals on ZnO nanowires under visible light due to the creation of midgap states in the bandgap by doping with Mn or Co. Reproduced from [108] under the terms of the Creative Commons Attribution License (CC BY).
Figure 4
Figure 4
Formation of superoxide anion and hydroxyl radicals on Mn-doped ZnO nanoparticles for degrading Orange II dye under solar light irradiation at different intervals of time. Reproduced from [109] with permission of Elsevier.
Figure 5
Figure 5
(A) Visible light induces localized surface plasmon resonance (LSPR) in AgNPs or AuNPs such that hot electrons are injected into the CB of ZnO for generating superoxide anion and hydroxyl radicals. (B) Under UV irradiation, photoexcited electrons are transferred from the CB of ZnO to AgNPs or AuNPs. VB = valence band, CB: conduction band, FMO: Fermi level of metal oxide, FM: Fermi level of metal, FEq: Fermi level of equilibrium, and M: Au and Ag. Reproduced from [127] with permission of the Royal Society of Chemistry.
Figure 6
Figure 6
The plots of Kubelka–Munk function vs photon energy for evaluating bandgap energy of (a) ZnO and Cu0.5Z, Cu1.5Z, Cu2.5Z and Cu5.0Z, and (b) NZ, Cu0.5NZ, Cu1.5NZ, Cu2.5NZ and Cu5.0NZ. (c) Optical absorbance of ZnO, Cu0.5Z, Cu1.5Z, Cu2.5Z, Cu5.0Z, NZ, Cu0.5NZ, Cu1.5NZ, Cu2.5NZ and Cu5.0NZ. Reproduced from [135] with permission of the Royal Society of Chemistry.
Figure 7
Figure 7
(a) UV-vis diffuse reflectance spectra, and (b) the plots of Kubelka–Munk function versus light energy for neat ZnO nanorod and RGO/ZnO nanocomposites. Reproduced from [172] with permission of the Royal Society of Chemistry.
Figure 8
Figure 8
Electron transfer from graphene sheet to the conduction band of ZnO under visible light for generating ROS. Reproduced from [173] with permission of Elsevier.
Figure 9
Figure 9
The transfer of photogenerated electron from the conduction band of ZnO to a single nanotube under UV irradiation. Reproduced from [175] with permission of Elsevier.
Figure 10
Figure 10
(a) Energy band alignments of type-I, type-II, and type-III heterojunctions. Reproduced from [186] with permission of Frontiers under the Creative Commons Attribution License. (b) The charge carrier transfer in CuO/ZnO photocatalyst under sunlight irradiation. Reproduced from [185] the terms of the Creative Commons Attribution License.
Figure 10
Figure 10
(a) Energy band alignments of type-I, type-II, and type-III heterojunctions. Reproduced from [186] with permission of Frontiers under the Creative Commons Attribution License. (b) The charge carrier transfer in CuO/ZnO photocatalyst under sunlight irradiation. Reproduced from [185] the terms of the Creative Commons Attribution License.
Figure 11
Figure 11
(a) Scanning electron microscope (SEM) image showing ZnO nanorods and nanobelts grown on the top (0001) and side surfaces of the ZnO microrods, respectively for 15 min. Inset: Magnified SEM image. (b) SEM image of ZnO nanorods and nanobelts after growing for 30 min at 1100 °C. Black arrows indicate nanobelts. Reproduced from [205] with permission of the American Chemical Society.
Figure 12
Figure 12
(a) SEM image of ZnO nanobelts. (b) Transmission electron micrograph of a helical nanobelt. Inset: structural model of ZnO nanobelt. Reproduced from [208] with permission of the American Chemical Society.
Figure 13
Figure 13
(A) SEM and (B) transmission electron microscope (TEM) images of ZnO nanoparticles (NPs) prepared by co-precipitation process using zinc acetate dihydrate and NaOH. Inset in (B) shows a high-magnified TEM image of hexagonal shaped ZnO NPs. Reproduced from [212] under a Creative Commons License.
Figure 14
Figure 14
(a) Proposed reaction mechanism between functional groups of grapefruit peel extract and zinc ions from zinc sulfate in forming zinc-ligand complex and ZnO NPs after drying in an oven at 150 °C. Reproduced from [217] under the Creative Commons Attribution License. (b) A schematic showing biosynthesis of ZnO nanoflowers (NFs) using Zn(NO3)2.6H2O and sea buckthorn (SBT) fruit extract. Reproduced from [220] under the terms of the Creative Commons Attribution License. (c) X-ray diffraction patterns showing the wurtzite structure of as-synthesized ZnO nanoparticles calcined at different temperatures. ZnO NPs are biosynthesized from Zn(NO3)2.6H2O and orange peel extract. (d) Fourier transform infrared spectra of orange peel extract and the as-synthesized ZnO NPs heat treated at different temperatures. Reproduced from [219] under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License.
Figure 14
Figure 14
(a) Proposed reaction mechanism between functional groups of grapefruit peel extract and zinc ions from zinc sulfate in forming zinc-ligand complex and ZnO NPs after drying in an oven at 150 °C. Reproduced from [217] under the Creative Commons Attribution License. (b) A schematic showing biosynthesis of ZnO nanoflowers (NFs) using Zn(NO3)2.6H2O and sea buckthorn (SBT) fruit extract. Reproduced from [220] under the terms of the Creative Commons Attribution License. (c) X-ray diffraction patterns showing the wurtzite structure of as-synthesized ZnO nanoparticles calcined at different temperatures. ZnO NPs are biosynthesized from Zn(NO3)2.6H2O and orange peel extract. (d) Fourier transform infrared spectra of orange peel extract and the as-synthesized ZnO NPs heat treated at different temperatures. Reproduced from [219] under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License.
Figure 15
Figure 15
SEM images of top and cross-sectional views of ZnO nanorods formed on ZnO-seeded SiO2/Si substrate by immersing in zinc acetylacetonate hydrate and HMTA solution for (a) 0.5 h and (b) 2 h. Insets in left panels of (a,b): High-magnification plan-view SEM images. Right panels: cross-sectional SEM micrographs. Reproduced from [223] under the terms of the Creative Commons Attribution License (CC BY).
Figure 16
Figure 16
SEM images showing (a) top view and (b) 45° tilt view of ZnO nanorod arrays. Reproduced from [230] under the terms of the Creative Commons Attribution 4.0 International License.
Figure 17
Figure 17
The effect of growth time on morphological evolution of flower-like ZnO nanostructures in preheated aqueous Zn(NO3)2·6H2O and HMTA solutions: (a) 2 h, (b) 4 h, (c) 6 h, and (d) 24 h. Reproduced from [231] under the Creative Commons Attribution License.
Figure 17
Figure 17
The effect of growth time on morphological evolution of flower-like ZnO nanostructures in preheated aqueous Zn(NO3)2·6H2O and HMTA solutions: (a) 2 h, (b) 4 h, (c) 6 h, and (d) 24 h. Reproduced from [231] under the Creative Commons Attribution License.
Figure 18
Figure 18
Schematic displaying the evolution of ZnO nanorods and ZnO nanoflowers from [Zn(OH)4]2− growth units. Reproduced from [239] under the Creative Commons Attribution License.
Figure 19
Figure 19
Schematic representation of the synthesis of AgNPs/ZnO nanocomposite using arginine as a linker to immobilize AgNPs on ZnO nanorods. Reproduced from [235] under a Creative Commons Attribution 3.0 Unported License.
Figure 20
Figure 20
TEM images of (a) a single ZnO nanorod with uniformly dispersed AgNPs. (b) Side view of AgNPs/ZnO nanorod and immobilized AgNP at the tip of ZnO (inset). High-resolution TEM (HRTEM) images showing (c) a clear interface between AgNP and ZnO, (d) lattice fringes with characteristic d-spacing of ZnO, and (e) lattice fringes of AgNP. The corresponding electron diffraction patterns of ZnO (above panel) and AgNP (below panel) are also presented. Reproduced from [235] under a Creative Commons Attribution 3.0 Unported License.
Figure 21
Figure 21
Formation of GO-ZnO nanocomposites using solvothermal process. (a) Transmission electron micrograph showing dispersion of ZnO nanoparticles on graphene sheet. (b) HRTEM image showing the lattice fringes of ZnO nanoparticle. Reproduced from [242] with permission of the American Chemical Society.
Figure 22
Figure 22
(a) Three possible mechanisms responsible for bactericidal activity of ZnO NPs: (1) The generation of reactive oxygen species (ROS), (2) release of Zn2+ ions, and (3) direct attachment on bacterial cell membrane. Reproduced from [261] under the terms of the Creative Commons Attribution 4.0 International License. Schematics showing the cell wall structures of (b) Gram-positive and (c) Gram-negative bacteria. Reproduced from [266] under the terms of the Creative Commons Attribution License.
Figure 22
Figure 22
(a) Three possible mechanisms responsible for bactericidal activity of ZnO NPs: (1) The generation of reactive oxygen species (ROS), (2) release of Zn2+ ions, and (3) direct attachment on bacterial cell membrane. Reproduced from [261] under the terms of the Creative Commons Attribution 4.0 International License. Schematics showing the cell wall structures of (b) Gram-positive and (c) Gram-negative bacteria. Reproduced from [266] under the terms of the Creative Commons Attribution License.
Figure 23
Figure 23
TEM images showing bare D. radiodurans cells (left panel), and internalization of ZnO NPs into bacterial cells (right panel). Reproduced from [276] under a Creative Commons Attribution 4.0 License.
Figure 24
Figure 24
Reduction in viability of D. radiodurans upon exposure to ZnO NPs for 3 h as determined by: (a) Colony count method, (b) 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, (c) propidium iodide (PI) uptake assay, and (d) ROS assay. The error bars are the standard deviation (n = 3); * denotes p < 0.05. Reproduced from [276] under a Creative Commons Attribution 4.0 International License.
Figure 25
Figure 25
(a) SEM images of E. coli with concentrations of 106, 107 and 108 CFU/mL upon exposure to ZnO nanoparticles of different doses (0.01, 0.1 and 1.0 mg/mL). Reproduced from [278] under a Creative Commons Attribution 4.0 International License. (b) SEM images of untreated E. coli cells (left panel) and ZnO NPs treated E. coli cells (right panel). Direct contact of ZnO NPs on bacterial membranes due to electrostatic interactions leads to membrane blebling, membrane damage, and membrane clumping as indicated by white arrows. Reproduced from [275] under a Creative Commons Attribution 4.0 International License. (c) Fluorescent 2,7-dichlorofluorescein (DCF) data showing the ROS level in Pseudomonas aeruginosa treated with ZnO NPs (5, 10, 25, 50 and 100 mg/mL) for 24 h. Reproduced from [29] under a Creative Commons Attribution License.
Figure 25
Figure 25
(a) SEM images of E. coli with concentrations of 106, 107 and 108 CFU/mL upon exposure to ZnO nanoparticles of different doses (0.01, 0.1 and 1.0 mg/mL). Reproduced from [278] under a Creative Commons Attribution 4.0 International License. (b) SEM images of untreated E. coli cells (left panel) and ZnO NPs treated E. coli cells (right panel). Direct contact of ZnO NPs on bacterial membranes due to electrostatic interactions leads to membrane blebling, membrane damage, and membrane clumping as indicated by white arrows. Reproduced from [275] under a Creative Commons Attribution 4.0 International License. (c) Fluorescent 2,7-dichlorofluorescein (DCF) data showing the ROS level in Pseudomonas aeruginosa treated with ZnO NPs (5, 10, 25, 50 and 100 mg/mL) for 24 h. Reproduced from [29] under a Creative Commons Attribution License.
Figure 26
Figure 26
Growth inhibition zones for various bacterial strains exposed to green ZnO NPs of different concentrations. Oxytetracycline was used as a positive control. Reproduced from [31] under a Creative Commons Attribution License.
Figure 27
Figure 27
Effect of AgNPs/ZnO concentrations on the viability of (a) E. coli, (b) S. aureus, and (c) bacterial colony features cultured on agar plates. (d) Inhibition zone of AgNPs/ZnO nanocomposite (NC), ZnO NPs and Gentamicin. Gentamicin is an antibiotic specifically used for treating bacterial infections. OD in (a) denotes optical density. Reproduced from [282] under a Creative Commons Attribution 4.0 International License.
Figure 28
Figure 28
(a) Inactivation efficiency of E. coli treated with ZnO nanorod arrays of various lengths (0.5–4 μm) for 30 min under different conditions (dark, visible light, and UV irradiation). (b) Inactivation efficiency of E. coli treated with ZnO nanorod arrays of various lengths with different Al2O3 layer thicknesses for 30 min in the dark. The values are the average of triplicate measurements, and error bars denote the standard deviation. (c) Bactericidal mechanisms of ZnO nanorod arrays in the dark: membrane rupture due to the nanorod piercing (inset: SEM images) > ROS generation > released Zn2+ ions. Reproduced from [288] with permission of Elsevier.
Figure 29
Figure 29
Antibacterial efficacy of pristine ZnO and Cu-doped ZnO nanorods using shake flask method. Reproduced from [103] with permission of Springer.
Figure 30
Figure 30
(a) The growth of bacterial populations as expressed by the logarithm of the number of cells (N) versus time. The unit of N is given as the colony forming unit (CFU) per mL. Bactericidal activity of AgNPs/ZnO nanorods against E. coli tested at an initial bacterial concentration of 103 CFU/mL (triangle) and 105 CFU/mL (square) in both deionized water (continuous line) and phosphate buffer medium (dashed line), respectively. (b) Bactericidal activity of AgNPs/ZnO nanorods, pure ZnO nanorods, colloidal AgNPs and AgNPs/silica against E. coli tested at an initial bacterial concentration of 103 CFU/mL. Four independent tests were performed against E. coli, and the average values reported. Reproduced from [235] under a Creative Commons Attribution 3.0 Unported License.
Figure 31
Figure 31
(a) Disinfection performance of AgNPs/ZnO nanorods after reusing for 11 runs against E. coli (103 CFU/mL). (b) The corresponding released silver ions vs time profiles after every usage. (c) TEM image showing internalization of AgNP by E. coli. Reproduced from [235] under a Creative Commons Attribution 3.0 Unported License.
Figure 32
Figure 32
(a) ROS and (b) lactate dehydrogenase (LDH) levels of different Gram-negative bacteria strains treated with pure GO and GO/ZnO nanohybrid. Reproduced from [246] with permission of Springer Nature.
Figure 33
Figure 33
Growth curves of E. coli treated with (a) GO-1/ZnO and (b) GO-2/ZnO hybrids of different doses; (c) Zinc released from GO/ZnO composites; (d) Wrapping of graphene sheet around E. coli and released Zn2+ ions led to bacterial cell membrane damage. The experiments were performed in triplicates, and the results were given as mean ± standard deviation. Reproduced from [242] with permission of the American Chemical Society.
Figure 33
Figure 33
Growth curves of E. coli treated with (a) GO-1/ZnO and (b) GO-2/ZnO hybrids of different doses; (c) Zinc released from GO/ZnO composites; (d) Wrapping of graphene sheet around E. coli and released Zn2+ ions led to bacterial cell membrane damage. The experiments were performed in triplicates, and the results were given as mean ± standard deviation. Reproduced from [242] with permission of the American Chemical Society.
Figure 34
Figure 34
(a) SEM image showing morphology of Cu-doped ZnO nanorods; (b) Photocatalytic efficiency of ZnO NPs and Cu/ZnO nanorods against E. coli under simulated solar light irradiation; (c) Photocatalytic mechanism of Cu/ZnO nanorods under solar light. Reproduced from [298] with permission from Elsevier.
Figure 35
Figure 35
(a) Change in fluorescence intensity of green/red ratio of live/dead assay, (b) ROS and (c) MDA levels of E.coli treated with different Cu5/ZnO concentrations. The data were expressed as the mean ± SD (standard deviation) for three independent experiments (n = 3). p < 0.05 (*), 0.001 (**) and 0.0001 (***) were measured significant as compared to control. Reproduced from [102] with permission of the American Chemical Society.
Figure 36
Figure 36
Photoinactivation of E. coli treated with Cu5/ZnO (200 µg/mL) under solar light (SL). The plots of (a) OD600 and (b) CFU/mL as a function of time. The experiments were performed in triplicates and data were expressed as the mean ± SD. Reproduced from [102] with permission of the American Chemical Society.
Figure 37
Figure 37
(a) TEM image and (b) schematic illustration of the production of hydroxyl, superoxide anion and singlet oxygen radicals on 4% AuNPs/ZnO exposed to simulated sunlight. Fine grey circles in (a) are AuNPs; scale bar is 20 nm. (c) A bar graph showing staphylococcus aureus survival upon exposure to ZnO NPs and 4% AuNPs/AgNPs at doses of 0.05 and 0.1 mg/mL without (black column) and with simulated sunlight illumination for 10 min. Control 1 is bacteria exposed to neither NPs nor light. Control 2 denotes bacteria exposed to simulated sunlight for 10 min in the absence of NPs. All tests are conducted in triplicates and repeated at least twice to obtain reproducibility. Reproduced from [305] with permission of the American Chemical Society.
Figure 37
Figure 37
(a) TEM image and (b) schematic illustration of the production of hydroxyl, superoxide anion and singlet oxygen radicals on 4% AuNPs/ZnO exposed to simulated sunlight. Fine grey circles in (a) are AuNPs; scale bar is 20 nm. (c) A bar graph showing staphylococcus aureus survival upon exposure to ZnO NPs and 4% AuNPs/AgNPs at doses of 0.05 and 0.1 mg/mL without (black column) and with simulated sunlight illumination for 10 min. Control 1 is bacteria exposed to neither NPs nor light. Control 2 denotes bacteria exposed to simulated sunlight for 10 min in the absence of NPs. All tests are conducted in triplicates and repeated at least twice to obtain reproducibility. Reproduced from [305] with permission of the American Chemical Society.
Figure 38
Figure 38
(a) Effect of Fe/ZnO NPs concentrations on solar-photocatalytic disinfection (PCD) kinetics of multidrug-resistant (MDR) E. coli. Control-1: bacteria exposed to Fe/ZnO NPs in the dark; Control-2: bacteria without Fe/ZnO NPs under solar irradiation. (b) Effect of different catalysts on the solar-PCD kinetics of MDR E. coli at a catalyst concentration of 500 mg/L. Initial MDR E. coli concentration = 1.2 × 107 CFU/mL, temperature = 35 ± 2 °C, pH = 6.5. Error bars indicate standard deviation of replicates (n = 3). Reproduced from [306] under a Creative Commons Attribution 4.0 International License.
Figure 39
Figure 39
Plots of (a) malondialdehyde (MDA) content vs time and (b) leakage of K+ ion vs time for MDR E. coli treated with Fe/ZnO NPs. Initial MDR E. coli concentration = 1.2 × 107 CFU/mL, Temperature = 35 ± 2 °C, pH = 6.5, [Fe/ZnO NPs] = 500 mg/L. Error bars indicate standard deviation of replicates (n = 3). Reproduced from [306] under a Creative Commons Attribution 4.0 International License.
Figure 40
Figure 40
Schematic view of visible-light photocatalytic bactericidal activity of Fe/ZnO NPs against MDR E. coli. Reproduced from [306] under a Creative Commons Attribution 4.0 International License.
Figure 41
Figure 41
Log reduction of E. coli treated with undoped ZnO SG, ZnO:TFA 1:1 and ZnO:TFA 1:2 under (A) the dark and (B) visible light conditions. (C) Bactericidal activity of those samples against S. aureus under visible light. All tests were conducted in triplicates. Reproduced from [310] with permission of Elsevier.
Figure 41
Figure 41
Log reduction of E. coli treated with undoped ZnO SG, ZnO:TFA 1:1 and ZnO:TFA 1:2 under (A) the dark and (B) visible light conditions. (C) Bactericidal activity of those samples against S. aureus under visible light. All tests were conducted in triplicates. Reproduced from [310] with permission of Elsevier.
Figure 42
Figure 42
(a) SEM image showing ZnO nanorods decorated with CuO. (b) Survival rate vs visible light irradiation time curves of E. coli treated with CuO/ZnO membrane and ZnO membrane. Reproduced from [313] under the Creative Commons Attribution License.
Figure 43
Figure 43
(a) Visible-light photocatalytic inactivation efficiency of E. coli (1 × 107 CFU/ mL) treated with GO/ZnO composite, GO and ZnO; (b) H2O2 generation from GO/ZnO during the photocatalytic inactivation process under visible light. All the experiments and controls were conducted in triplicates. Reproduced from [173] with permisiion of Elsevier.
Figure 44
Figure 44
Hemolysis is caused by the binding or encapsulation of nanoparticles (NPs) in red blood cells (RBCs) leading to the generation of ROS, oxidative stress, and disturbed homeostasis as a result of osmotic shock and surface integrity problems. Reproduced from [320] with permission of Springer Nature.
Figure 45
Figure 45
(A) Hemolytic effect of ZnO NPs (<50 nm) of two different doses with and without albumin (4.5 μg dl−1) on erythrocytes for 24 h. # denotes significant difference at p ≤ 0.05 of the samples compared to control. (B) The effect of ZnO NPs (<50 nm; 200 μg/mL) and ZnO NPs with ferulic acid (FA) exposure on hemolysis in the presence of fetal bovine serum of different concentrations (3.125%, 6.25%, 12.5% and 25%) for 24 h. # denotes significant difference at p ≤ 0.05 of the samples compared to control. Reproduced from [323] under Creative Commons Attribution License.
Figure 46
Figure 46
Hemocompatibility assay results of human erythrocytes treated with (a) ZnO nanostrucuture (ZnONS) and (b) bovine α-lactalbumin (BLA) functionalized ZnONS of different concentrations. Trixton X 1% was employed as a control. All the data were expressed as mean ± standard deviation, n = 3. Reproduced from [326] with permission of Elsevier.
Figure 47
Figure 47
(a) The hemolytic activity of bulk ZnO, biosynthesized ZnO NPs and AgNPs/ZnO nanocomposite. Reproduced from [282] under the terms of Creative Commons License. (b) Percentage hemolysis of ZnO nanoparticles prepared by biosynthesis (green column) and co-precipitation (orange column). 0.1% Triton X-100 was employed as a positive control (PC). Reproduced from [328] with permission of Springer.
Figure 48
Figure 48
(a) SEM images showing lysis of RBCs by S. aureus and their inhibition by green ZnO NPs. Images from left to right: untreated RBCs, ZnO NPs treated RBCs, S. aureus infected RBCs, and RBCs co-cultured with S. aureus and ZnO NPs. (b) Inhibition of hemolysis in S. aureus infected RBCs by ZnO NPs. All data are expressed as the mean ± standard deviation. *** for p ≤ 0.001; ** for p ≤ 0.01. Reproduced from [332] under a Creative Commons License.

References

    1. Fletcher S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015;20:243–252. doi: 10.1007/s12199-015-0468-0.
    1. Gill A.S., Morrissey H., Rahman A. A systematic review and meta-analysis evaluating antibiotic prophylaxis in dental implants and extraction procedures. Medicina. 2018;54:95. doi: 10.3390/medicina54060095.
    1. Pang Z., Raudonis R., Glick B.R., Lin T.J., Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019;37:177–192. doi: 10.1016/j.biotechadv.2018.11.013.
    1. Levin-Reisman I., Brauner A., Ronin I., Balaban N.Q. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc. Nat. Acad. Sci. USA. 2019;116:14734–14739. doi: 10.1073/pnas.1906169116.
    1. O’Gara J.P. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ. Microbiol. 2017;19:3823–3833. doi: 10.1111/1462-2920.13833.
    1. Li B., Webster T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopaedic infections. J. Orthop. Res. 2018;36:22–32. doi: 10.1002/jor.23656.
    1. Craft K.M., Nguyen J.M., Berg L.J., Townsend S.D. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. Med. Chem. Commun. 2019;10:1231–1241. doi: 10.1039/C9MD00044E.
    1. Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid. Based Complement. Altern. Med. 2015;2015:246012. doi: 10.1155/2015/246012.
    1. Hemeg H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017;12:8211–8225. doi: 10.2147/IJN.S132163.
    1. Choudhari P., Das S.K. Bio-reduced graphene oxide as a nanoscale antimicrobial coating for medical devices. ACS Omega. 2019;4:387–397. doi: 10.1021/acsomega.8b02787.
    1. Tjong S.C., Chen H. Nanocrystalline materials and coatings. Mater. Sci. Eng. R Rep. 2004;45:1–88. doi: 10.1016/j.mser.2004.07.001.
    1. Tjong S.C. Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications. 2nd ed. Elsevier; London, UK: 2013.
    1. Liao C., Li Y., Tjong S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018;19:3564. doi: 10.3390/ijms19113564.
    1. Liao C., Li Y., Tjong S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019;20:449. doi: 10.3390/ijms20020449.
    1. Limo M.J., Sola-Rabada A., Boix E., Thota V., Westcott J.C., Puddu V., Perry C.C. Interactions between metal oxides and biomolecules: From fundamental understanding to applications. Chem. Rev. 2018;118:11118–11193. doi: 10.1021/acs.chemrev.7b00660.
    1. Baptista P.V., McCusker M.P., Carvalho A.G., Ferreira D.A., Mohan N.M., Martins M., Fernandes A.R. Nano-strategies to fight multidrug resistant bacteria—“A battle of the titans”. Front. Microbiol. 2018;9:1441. doi: 10.3389/fmicb.2018.01441.
    1. Yan X., He B., Liu L., Qu G., Shi J., Hu L., Jiang G. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics. 2018;10:557–564. doi: 10.1039/C7MT00328E.
    1. Chatterjee A.K., Chakraborty R., Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25:135101. doi: 10.1088/0957-4484/25/13/135101.
    1. Ansari M.A., Khan H.M., Khan A.A., Sultan A., Azam A. Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum β-lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India. Appl. Microbiol. Biotechnol. 2012;94:467–477. doi: 10.1007/s00253-011-3733-1.
    1. Lipovsky A., Tzitrinovich Z., Friedmann H., Applerot G., Gedanken A., Lubart R. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C. 2009;113:15997–16001. doi: 10.1021/jp904864g.
    1. Prasanna V.L., Vijayaraghavan R. Insight into the mechanism of antibacterial activity of ZnO: Surface defects mediated reactive oxygen species even in the dark. Langmuir. 2015;31:9155–9162. doi: 10.1021/acs.langmuir.5b02266.
    1. Joe A., Park S.H., Shim K.D., Kim D.J., Jhee K.H., Lee H.W., Heo C.H., Kim H.M., Jang E.S. Antibacterial mechanism of ZnO nanoparticles under dark conditions. J. Ind. Eng. Chem. 2017;45:430–439. doi: 10.1016/j.jiec.2016.10.013.
    1. Chauhan A., Verma R., Kumari S., Sharma A., Sandilya P., Li X., Batoo K.M., Imran A., Kulshrestha S., Kumar R. Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 2020;10:7881. doi: 10.1038/s41598-020-64419-0.
    1. Liao C., Li Y., Tjong S.C. Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials. 2020;10:124. doi: 10.3390/nano10010124.
    1. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956.
    1. Da Silva B.L., Caetano B.L., Chiari-Andréo B.G., Pietro R.C., Chiavacci L.A. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf. B Biointerfaces. 2019;177:440–447. doi: 10.1016/j.colsurfb.2019.02.013.
    1. Paduraru A., Ghitulica C., Trusca R., Surdu V.A., Neacsu I.A., Holban A.M., Birca A.C., Iordache F., Vasile B.S. Antimicrobial wound dressings as potential materials for skin tissue regeneration. Materials. 2019;12:1859. doi: 10.3390/ma12111859.
    1. Abinaya C., Marikkannan M., Manikandan M., Mayandi J., Suresh P., Shanmugaiah V., Ekstrum C., Pearce J.M. Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides. Mater. Chem. Phys. 2016;184:172–182. doi: 10.1016/j.matchemphys.2016.09.039.
    1. Dwivedi S., Wahab R., Khan F., Mishra Y.K., Musarrat J., Al-Khedhairy A.A. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE. 2014;9:e111289. doi: 10.1371/journal.pone.0111289.
    1. Elumalai K., Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.) App. Surf. Sci. 2015;345:329–336. doi: 10.1016/j.apsusc.2015.03.176.
    1. Abbasi B.A., Iqbal J., Ahmad R., Zia L., Kanwal S., Mahmood T., Wang C., Chen J.-T. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules. 2020;10:38. doi: 10.3390/biom10010038.
    1. Paladini F., Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials. 2019;12:2540. doi: 10.3390/ma12162540.
    1. Tarannum N., Gautam Y.K. Facile green synthesis and applications of silver nanoparticles: A state-of-the-art review. RSC Adv. 2019;9:34926–34948. doi: 10.1039/C9RA04164H.
    1. Gliga A.R., Skoglund S., Odnevall Wallinder I., Fadeel B., Karlsson H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11.
    1. Kandpal K., Gupta N. Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies. J. Mater. Sci. Mater. Electron. 2016;27:5972–5981. doi: 10.1007/s10854-016-4519-0.
    1. Janotti A., Van de Walle C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501.
    1. Wang B., Huang W., Chi L., Al-Hashimi M., Marks T.J., Facchetti A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018;118:5690–5754. doi: 10.1021/acs.chemrev.8b00045.
    1. Rauwel E., Galeckas A., Rauwel P. Photoluminescent cubic and monoclinic HfO2 nanoparticles: Effects of temperature and ambient. Mater. Res. Express. 2014;1:015035. doi: 10.1088/2053-1591/1/1/015035.
    1. Zou Y., Zhang Y., Hu Y., Gu H. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors. 2018;18:2072. doi: 10.3390/s18072072.
    1. Chen C., Zhou P., Wang N., Ma Y., San H. UV-assisted photochemical synthesis of reduced graphene oxide/ZnO nanowires composite for photoresponse enhancement in UV photodetectors. Nanomaterials. 2018;8:26. doi: 10.3390/nano8010026.
    1. Wu D., Wang X., Cao K., An Y., Song X., Liu N., Xu F., Gao Z., Jiang K. ZnO nanorods with tunable aspect ratios deriving from oriented-attachment for enhanced performance in quantum-dot sensitized solar cells. Electrochim Acta. 2017;231:1–12. doi: 10.1016/j.electacta.2017.02.029.
    1. Ghamsari M.S., Alamdari S., Han W., Park H.H. Impact of nanostructured thin ZnO film in ultraviolet protection. Int. J. Nanomed. 2016;12:207–216. doi: 10.2147/IJN.S118637.
    1. Zhang G., Xiao Y., Yan J., Xie N., Liu R., Zhang Y. Ultraviolet light-degradation behavior and antibacterial activity of polypropylene/ZnO nanoparticles fibers. Polymers. 2019;11:1841. doi: 10.3390/polym11111841.
    1. Fouda A., Hassan S.E.D., Salem S.S., Shaheen T.I. In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 2018;125:252–261. doi: 10.1016/j.micpath.2018.09.030.
    1. Kim I., Viswanathan K., Kasi G., Sadeghi K., Thanakkasaranee S., Seo J. Poly(lactic Acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers. 2019;11:1427. doi: 10.3390/polym11091427.
    1. Abbas M., Buntinx M., Deferme W., Peeters R. (Bio)polymer/ZnO nanocomposites for packaging applications: A review of gas barrier and mechanical properties. Nanomaterials. 2019;9:1494. doi: 10.3390/nano9101494.
    1. Meng Y.Z., Tjong S.C. Rheology and morphology of compatibilized polyamide 6 blends containing liquid crystalline copolyesters. Polymer. 1998;39:99–107. doi: 10.1016/S0032-3861(97)00218-8.
    1. Meng Y.Z., Tjong S.C., Hay A.S., Wang S.J. Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether)s. J. Polym. Sci. A Polym. Chem. 2001;39:3218–3226. doi: 10.1002/pola.1304.
    1. Tjong S.C., Meng Y.Z. Morphology and mechanical characteristics of compatibilized polyamide 6-liquid crystalline polymer composites. Polymer. 1997;38:4609–4615. doi: 10.1016/S0032-3861(96)01082-8.
    1. Liu C., Chan K.W., Shen J., Liao C., Yeung K.W.K., Tjong S.C. Polyetheretherketone hybrid composites with bioactive nanohydroxyapatite and multiwalled carbon nanotube fillers. Polymers. 2016;8:425. doi: 10.3390/polym8120425.
    1. Chan K.W., Liao C., Wong H.M., Yeung K.W.K., Tjong S.C. Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Adv. 2016;6:19417–19429. doi: 10.1039/C5RA22134J.
    1. Liao C., Li K., Wong H.M., Tong W.Y., Yeung K.W.K., Tjong S.C. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater. Sci. Eng. C. 2013;13:1380–1388. doi: 10.1016/j.msec.2012.12.039.
    1. Liao C., Wong H.M., Yeung K.W.K., Tjong S.C. The development, fabrication and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers. Int. J. Nanomed. 2014;9:1299–1310. doi: 10.2147/IJN.S58332.
    1. Liu C., Wong H.M., Yeung K.W., Tjong S.C. Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers. 2016;8:287. doi: 10.3390/polym8080287.
    1. Dimapilis E.A., Hsu C.S., Mendoza R.M., Lu M.C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018;28:47–56. doi: 10.1016/j.serj.2017.10.001.
    1. Tian C., Zhang Q., Wu A., Jiang M., Liang Z., Jiang B., Fu H. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012;48:2858–2860. doi: 10.1039/c2cc16434e.
    1. Raji R., Gopchandran K.G. ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Dev. 2017;2:51–58. doi: 10.1016/j.jsamd.2017.02.002.
    1. Kumar S.G., Rao K.S. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 2015;5:3306–3351. doi: 10.1039/C4RA13299H.
    1. Sang Y., Liu H., Umar A. Photocatalysis from UV/vis to near-infrared light: Toward full solar-light spectrum activity. ChemCatChem. 2015;7:559–573. doi: 10.1002/cctc.201402812.
    1. Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020.
    1. Saleh R., Djaja N.F. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta Part A. 2014;130:581–590. doi: 10.1016/j.saa.2014.03.089.
    1. Cardoza-Contreras M.N., Vásquez-Gallegos A., Vidal-Limon A., Romo-Herrera J.M., Aguila S., Contreras O.E. Photocatalytic and antimicrobial properties of Ga doped and Ag doped ZnO nanorods for water treatment. Catalysts. 2019;9:165. doi: 10.3390/catal9020165.
    1. Naskar A., Lee S., Kim K.S. Antibacterial potential of Ni-doped zinc oxide nanostructure: Comparatively more effective against Gram-negative bacteria including multidrug resistant strains. RSC Adv. 2020;10:1232–1242. doi: 10.1039/C9RA09512H.
    1. Azfar A.K., Kasim M.F., Lokman I.M., Rafaie H.A., Mastuli M.S. Comparative study on photocatalytic activity of transition metals (Ag and Ni)-doped ZnO nanomaterials synthesized via sol–gel method. R. Soc. Open Sci. 2020;7:191590. doi: 10.1098/rsos.191590.
    1. Papadaki D., Mhlongo G.H., Motaung D.E., Nkosi S.S., Panagiotaki K., Chrsitaki E., Assimakopoulos M.N., Papadimitriou V.C., Rosei F., Kiriakidis G., et al. Hierarchically porous Cu-, Co-, and Mn-doped platelet-like ZnO nanostructures and their photocatalytic performance for indoor air quality control. ACS Omega. 2019;4:16429–16440. doi: 10.1021/acsomega.9b02016.
    1. Mohammadi-Aloucheh R., Habibi-Yangjeh A., Bayrami A., Latifi-Navid S., Asadi A. Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Artif. Cells Nanomed. B. 2018;46:1200–1209. doi: 10.1080/21691401.2018.1448988.
    1. Liao C., Jin Y., Li Y., Tjong S.C. Interactions of ZnO nanostructures with mammalian cells: Cytotoxicity and photocatalytic toxicity. Int. J. Mol. Sci. 2020;21:6305. doi: 10.3390/ijms21176305.
    1. Wang Q., Li S., He Q., Zhu W., He D., Peng F., Lei L., Zhang L., Zhang Q., Tan L., et al. Reciprocating compression of ZnO probed by X-ray diffraction: The size efect on structural properties under high pressure. Inorg. Chem. 2018;57:5380–5388. doi: 10.1021/acs.inorgchem.8b00357.
    1. Yan X., Dong H., Li Y., Lin C., Park C., He D., Yang W. Phase transition induced strain in ZnO under high pressure. Sci. Rep. 2016;6:24958. doi: 10.1038/srep24958.
    1. Razavi-Khosroshahi H., Edalati K., Wu J., Nakashima Y., Arita M., Ikoma Y., Sadakiyo M., Inagaki Y., Staykov A., Yamauchi M., et al. High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. J. Mater. Chem. A. 2017;5:20298–20303. doi: 10.1039/C7TA05262F.
    1. Hidalgo-Jimenez J., Wang Q., Edalati K., Cubero-Sesin J.M., Razavi-Khosroshahi H., Ikoma Y., Gutierrez-Fallas D., Dittel-Meza F.A., Rodriguez-Rufino J.C., Fuji M., et al. Phase transformations, vacancy formation and variations of optical and photocatalytic properties in TiO2-ZnO composites by high-pressure torsion. Int. J. Plast. 2020;124:170–185. doi: 10.1016/j.ijplas.2019.08.010.
    1. Ozgur U., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Doganl S., Avrutin V., Cho J.S., Morkoc H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005;98:041301. doi: 10.1063/1.1992666.
    1. Kamble A.S., Sinha B.B., Chung K., Gil M.G., Burungale V., Park C.J., Kim J.H., Patil P.S. Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays. Electrochim. Acta. 2014;149:386–393. doi: 10.1016/j.electacta.2014.10.049.
    1. Wang Z.L. Nanostructures of zinc oxide. Mater. Today. 2004;7:26–33. doi: 10.1016/S1369-7021(04)00286-X.
    1. Mora-Fonz D., Lazauskas T., Farrow M.R., Catlow R.A., Woodley S.M., Sokol A.A. Why are polar surfaces of ZnO stable? Chem. Mater. 2017;29:5306–5320. doi: 10.1021/acs.chemmater.7b01487.
    1. Rana A.U., Lee J.Y., Shahid A., Kim H.-S. Growth method-dependent and defect density-oriented structural, optical, conductive, and physical properties of solution-grown ZnO nanostructures. Nanomaterials. 2017;7:266. doi: 10.3390/nano7090266.
    1. Araujo E.A., Jr., Nobre F.X., da Silva Sousa G., Cavalcante L.S., Santos M.R., Souza F.L., de Matos J.M. Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. RSC Adv. 2017;7:24263. doi: 10.1039/C7RA03277C.
    1. Napi M.L., Sultan S.M., Ismail R., How K.W., Ahmad M.K. Electrochemical-based biosensors on different zinc oxide nanostructures: A review. Materials. 2019;12:2985. doi: 10.3390/ma12182985.
    1. Karnati P., Haque A., Taufique M.F.N., Ghosh K. A Systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique. Nanomaterials. 2018;8:62. doi: 10.3390/nano8020062.
    1. Ching K.L., Li G., Ho Y.L., Kwok H.S. The role of polarity and surface energy in the growth mechanism of ZnO from nanorods to nanotubes. CrystEngComm. 2016;18:779–786. doi: 10.1039/C5CE02164B.
    1. Leelavathi A., Madras G., Ravishankar N. Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Phys. Chem. Chem. Phys. 2013;15:10795–10802. doi: 10.1039/c3cp51058a.
    1. Samadi M., Zirak M., Naseri A., Kheirabadi M., Ebrahimi M., Moshfegh A.Z. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: A review. Res. Chem. Intermed. 2019;45:2197–2254. doi: 10.1007/s11164-018-03729-5.
    1. Chaudhary S., Umar A., Bhasin K.K., Baskoutas S. Chemical sensing applications of ZnO nanomaterials. Materials. 2018;11:287. doi: 10.3390/ma11020287.
    1. Ishioka J., Kogure K., Ofuji K., Kawaguchi K., Jeem M., Kato T., Shibayama T., Watanabe S. In situ direct observation of photocorrosion in ZnO crystals in ionic liquid using a laser-equipped high-voltage electron microscope. AIP Adv. 2017;7:035220. doi: 10.1063/1.4979726.
    1. Han J., Qiu W., Gao W. Potential dissolution and photo-dissolution of ZnO thin films. J. Hazard. Mater. 2010;178:115–122. doi: 10.1016/j.jhazmat.2010.01.050.
    1. Zhang L., Jeem M., Okamoto K., Watanabe S. Photochemistry and the role of light during the submerged photosynthesis of zinc oxide nanorods. Sci. Rep. 2018;8:177. doi: 10.1038/s41598-017-18572-8.
    1. Zhang L., Cheng H., Zong R., Zhu Y. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J. Phys. Chem. C. 2009;113:2368–2374. doi: 10.1021/jp807778r.
    1. Han C., Yang M.Q., Weng B., Xu X.J. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys. 2014;16:16891–16903. doi: 10.1039/C4CP02189D.
    1. Peng Y., Ji J., Chen D. Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Appl. Surf. Sci. 2015;356:762–768. doi: 10.1016/j.apsusc.2015.08.070.
    1. Zhang Y., Mandal R., Ratchford D.C., Anthony R., Yeom J. Si nanocrystals/ZnO nanowires hybrid structures as immobilized photocatalysts for photodegradation. Nanomaterials. 2020;10:491. doi: 10.3390/nano10030491.
    1. Rodwihok C., Wongratanaphisan D., Ngo Y.L., Khandelwal M., Hur S.H., Chung J.S. Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity. Nanomaterials. 2019;9:1441. doi: 10.3390/nano9101441.
    1. Taylor C.M., Ramirez-Canon A., Wenk J., Mattia D. Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts. J. Hazard. Mater. 2019;378:120799. doi: 10.1016/j.jhazmat.2019.120799.
    1. Zhang Q., Xu M., You B., Zhang Q., Yuan H., Ostrikov K. Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Appl. Sci. 2018;8:353. doi: 10.3390/app8030353.
    1. Ansari S.A., Khan M.M., Kalathil S., Nisar A., Lee J., Cho M.H. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale. 2013;5:9238–9246. doi: 10.1039/c3nr02678g.
    1. Tang Y., Zhou H., Zhang K., Ding J., Fan T., Zhang D. Visible-light-active ZnO via oxygen vacancy manipulation for efficient formaldehyde photodegradation. Chem. Eng. J. 2015;262:260–267. doi: 10.1016/j.cej.2014.09.095.
    1. Dash P., Manna A., Mishra N.C., Varma S. Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis. Physica E. 2019;107:38–46. doi: 10.1016/j.physe.2018.11.007.
    1. Gupta J., Bahadur D. Defect-mediated reactive oxygen species generation in Mg-substituted ZnO nanoparticles: Efficient nanomaterials for bacterial inhibition and cancer therapy. ACS Omega. 2018;3:2956–2965. doi: 10.1021/acsomega.7b01953.
    1. Mia M.N.H., Pervez M.F., Hossain M.K., Rahman M.R., Uddin M.J., Al Mashud M.A., Ghosh H.K., Hoq M. Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method. Results Phys. 2017;7:2683–2691. doi: 10.1016/j.rinp.2017.07.047.
    1. Kasi G., Seo J. Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. C. 2019;98:717–725. doi: 10.1016/j.msec.2019.01.035.
    1. Ma Z., Ren F., Ming X., Long Y., Volinsky A.A. Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials. 2019;12:196. doi: 10.3390/ma12010196.
    1. Modwi A., Ghanem M.A., Al-Mayouf A.M., Houas M. Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. J. Mol. Struct. 2018;1173:1–6. doi: 10.1016/j.molstruc.2018.06.082.
    1. Gupta J., Bahadur D. Visible light sensitive mesoporous Cu-substituted ZnO nano assembly for enhanced photocatalysis, bacterial inhibition, and noninvasive tumor regression, . ACS Sustain. Chem. Eng. 2017;5:8702–8709. doi: 10.1021/acssuschemeng.7b01433.
    1. Bhuyan T., Sharma R., Anand S. A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J. Nanopart. Res. 2015;17:288. doi: 10.1007/s11051-015-3093-3.
    1. Rajivgandhi G.N., Ramachandran G., Alharbi N.S., Kadaikunnan S., Khaleed J.M., Manokaran N., Li W.J. Substantial effect of Cr doping on the antimicrobial activity of ZnO nanoparticles prepared by ultrasonication process. Mater. Sci. Eng. B. 2021;263:114817. doi: 10.1016/j.mseb.2020.114817.
    1. Jacob N.M., Madras G., Kottam N., Thomas T. Multivalent Cu-doped ZnO nanoparticles with full solar spectrum absorbance and enhanced photoactivity. Ind. Eng. Chem. Res. 2014;53:5895–5904. doi: 10.1021/ie404378z.
    1. Tsuzuki T., He R., Dodd A., Saunders M. Challenges in determining the location of dopants, to study the influence of metal doping on the photocatalytic activities of ZnO nanopowders. Nanomaterials. 2019;9:481. doi: 10.3390/nano9030481.
    1. Ma Q., Lv X., Wang Y., Chen J. Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures. Opt. Mater. 2016;60:86–93. doi: 10.1016/j.optmat.2016.07.014.
    1. Li W., Wang G., Chen C., Liao J., Li Z. Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials. 2017;7:20. doi: 10.3390/nano7010020.
    1. Achouri F., Corbel S., Balan L., Mozet K., Girot E., Medjahdi G., Said M.B., Ghrabi A., Schneider R. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 2016;101:309–316. doi: 10.1016/j.matdes.2016.04.015.
    1. Han X., Wahl S., Russo P.A., Pinna N. Cobalt-assisted morphology and assembly control of Co-doped ZnO nanoparticles. Nanomaterials. 2018;8:249. doi: 10.3390/nano8040249.
    1. Yin Q., Qiao R., Li Z., Zhang X.L., Zhu L. Hierarchical nanostructures of nickel-doped zinc oxide: Morphology controlled synthesis and enhanced visible-light photocatalytic activity. J. Alloy Compd. 2015;618:318–325. doi: 10.1016/j.jallcom.2014.08.087.
    1. Singh P., Kumar R., Singh R.K. Progress on transition metal-doped ZnO nanoparticles and its application. Ind. Eng. Chem. Res. 2019;58:17130–17163. doi: 10.1021/acs.iecr.9b01561.
    1. Bora T., Zoepfl D., Dutta J. Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Sci. Rep. 2016;6:26913. doi: 10.1038/srep26913.
    1. Sarma B., Sarma B.K. Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system. Appl. Surf. Sci. 2017;410:557–565. doi: 10.1016/j.apsusc.2017.03.154.
    1. Liu Q., Liu E., Li J., Qiu Y., Chen R. Rapid ultrasonic-microwave assisted synthesis of spindle-like Ag/ZnO nanostructures and their enhanced visible-light photocatalytic and antibacterial activities. Catal. Today. 2020;339:391–402. doi: 10.1016/j.cattod.2019.01.017.
    1. Lyadov N.M., Gumarov A.I., Kashapov R.N., Noskov A.I., Valeev V.F., Nuzhdin V.I., Bazarov V.V., Khaibullin R.I., Faizrakhmanov I.A. Structure and optical properties of ZnO with silver nanoparticles. Semiconductors. 2016;50:43–49. doi: 10.1134/S1063782616010139.
    1. Liu H., Hu Y., Zhang Z., Liu Z., Jia H., Xu B. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation. Appl. Surf. Sci. 2015;355:644–652. doi: 10.1016/j.apsusc.2015.07.012.
    1. Raji R., Sibi K.S., Gopchandran K.G. ZnO: Ag nanorods as efficient photocatalysts: Sunlight driven photocatalytic degradation of sulforhodamine B. Pt BAppl. Surf. Sci. 2018;427:863–875. doi: 10.1016/j.apsusc.2017.09.050.
    1. Chamorro W., Ghanbaja J., Battie Y., Naciri A.E., Soldera F., Mücklich F., Horwat D. Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films. J. Phys. Chem. C. 2016;120:29405–29413. doi: 10.1021/acs.jpcc.6b09974.
    1. Zhang J., Tse K., Wong M., Zhang Y., Zhu J. A brief review of co-doping. Front. Phys. 2016;11:117405. doi: 10.1007/s11467-016-0577-2.
    1. Yan F., Wang Y., Zhang J., Lin Z. Schottky or Ohmic metal–semiconductor contact: Influence on photocatalytic efficiency of Ag/ZnO and Pt/ZnO model systems. ChemSusChem. 2014;7:101–104. doi: 10.1002/cssc.201300818.
    1. Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics. 2014;8:95–103. doi: 10.1038/nphoton.2013.238.
    1. Furube A., Hashimoto S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication. NPG Asia Mater. 2017;9:e454. doi: 10.1038/am.2017.191.
    1. Krajczewski J., Kolataj K., Kudelski A. Plasmonic nanoparticles in chemical analysis. RSC Adv. 2017;7:17559–17576. doi: 10.1039/C7RA01034F.
    1. Wang C.S., Lin H.Y., Lin J.M., Chen Y.F. Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles. Appl. Phys. Express. 2012;6:062033. doi: 10.1143/APEX.5.062003.
    1. Pei J., Jiang D., Zhao M., Duan Q., Liu R., Sun L., Guo Z., Hou J., Qin J., Li B., et al. Controlled enhancement range of the responsivity in ZnO ultraviolet photodetectors by Pt nanoparticles. Appl. Surf. Sci. 2016;389:1056–1061. doi: 10.1016/j.apsusc.2016.08.048.
    1. Fageria P., Gangopadhyay S., Pande S. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 2014;4:24962–24972. doi: 10.1039/C4RA03158J.
    1. Ziashahabi A., Prato M., Dang Z., Poursalehi R., Naseri N. The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Sci. Rep. 2019;9:11839. doi: 10.1038/s41598-019-48075-7.
    1. Zhang L., Zhu X., Wang Z., Yun S., Guo T., Zhang J., Hu T., Jiang J., Chen J. Synthesis of ZnO doped high valence S element and study of photogenerated charges properties. RSC Adv. 2019;9:4422. doi: 10.1039/C8RA07751G.
    1. Zhang X., Qin J., Hao R., Wang L., Shen X., Yu R., Limpanart S., Ma M., Liu R. Carbon-doped ZnO nanostructures: Facile synthesis and visible light photocatalytic applications. J. Phys. Chem. C. 2015;119:20544–20554. doi: 10.1021/acs.jpcc.5b07116.
    1. Lavand A.B., Malghe Y.S. Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide. Int. J. Photochem. 2015;2015:790153. doi: 10.1155/2015/790153.
    1. Gionco C., Fabbri D., Calza P., Paganini M.C. Photocatalytic tests of N-doped zinc oxide: A New interesting photocatalyst. J. Nanometer. 2016;2016:4129864. doi: 10.1155/2016/4129864.
    1. Kumari R., Sahai A., Goswami N. Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Prog. Nat. Sci-Mater. 2015;25:300–309. doi: 10.1016/j.pnsc.2015.08.003.
    1. Lavand A.B., Malghe Y.S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. J. Asian Ceram. Soc. 2015;3:305–310. doi: 10.1016/j.jascer.2015.06.002.
    1. Gupta R., Eswar N.K., Modak J.M., Madras G. Visible light driven efficient N and Cu co-doped ZnO for photoinactivation of Escherichia coli. RSC Adv. 2016;6:85675–85687. doi: 10.1039/C6RA16739J.
    1. Wang Y., Cheng J., Yu S., Alcocer E.J., Shahid M., Wang Z., Pan W. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity. Sci. Rep. 2016;6:32711. doi: 10.1038/srep32711.
    1. Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f.
    1. Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M., Geim A.K. Fines structure constant defines visual transparency of graphene. Science. 2008;320:1308. doi: 10.1126/science.1156965.
    1. Hu L., Hecht D.S., Grüner G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010;110:5790–5844. doi: 10.1021/cr9002962.
    1. Kim H., Wang M., Lee S.K., Kang J., Nam J.D., Ci L., Suhr J. Tensile properties of millimeter-long multi-walled carbon nanotubes. Sci. Rep. 2017;7:9512. doi: 10.1038/s41598-017-10279-0.
    1. Kumar P., Huo P., Zhang R., Liu B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials. 2019;9:737. doi: 10.3390/nano9050737.
    1. Karahan H.E., Wiraja C., Xu C., Wei J., Wang Y., Wang L., Liu F., Chen Y. Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Adv. Healthc. Mater. 2018;7:1701406. doi: 10.1002/adhm.201701406.
    1. Al-Jumaili A., Alancherry S., Bazaka K., Jacob M.V. Review on the antimicrobial properties of carbon nanostructures. Materials. 2017;10:1066. doi: 10.3390/ma10091066.
    1. He L., Tjong S.C. Nanostructured transparent conductive films: Fabrication, characterization and applications. Mater. Sci. Eng. R Rep. 2016;109:1–101. doi: 10.1016/j.mser.2016.08.002.
    1. He L., Tjong S.C. Aqueous graphene oxide-dispersed carbon nanotubes as inks for the scalable production of all-carbon transparent conductive films. J. Mater. Chem. C. 2016;4:7043–7051. doi: 10.1039/C6TC01224H.
    1. He L., Liao C., Tjong S.C. Scalable fabrication of high-performance transparent conductors using graphene oxide-stabilized single-walled carbon nanotube inks. Nanomaterials. 2018;8:224. doi: 10.3390/nano8040224.
    1. Ma Y., Zhi L. Graphene-based transparent conductive films: Material systems, preparation and applications. Small Methods. 2019;3:1800199. doi: 10.1002/smtd.201800199.
    1. He L., Tjong S.C. Silver-decorated reduced graphene oxides as novel building blocks for transparent conductive films. RSC Adv. 2017;7:2058–2065. doi: 10.1039/C6RA26348H.
    1. He L., Tjong S.C. Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res. Lett. 2013;8:132. doi: 10.1186/1556-276X-8-132.
    1. Tjong S.C. Polymer nanocomposite bipolar plates reinforced with carbon nanotubes and graphite nanosheets. Energy Environ. Sci. 2011;4:605–626. doi: 10.1039/c0ee00689k.
    1. Albero J., Mateo D., Garcia H. Graphene-based materials as efficient photocatalysts for water splitting. Molecules. 2019;24:906. doi: 10.3390/molecules24050906.
    1. Khazi-Syed A., Hasan M.T., Campbell E., Gonzalez-Rodriguez R., Naumov A.V. Single-walled carbon nanotube-assisted antibiotic delivery and imaging in S. epidermidis strains addressing antibiotic resistance. Nanomaterials. 2019;9:1685. doi: 10.3390/nano9121685.
    1. Bellamkonda S., Thangavel S., Hafeez H.Y., Neppolian B., Ranga Rao G. Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: An efficient non-noble metal photocatalyst for water splitting. Catal. Today. 2019;321–322:120–127. doi: 10.1016/j.cattod.2017.10.023.
    1. Rauwel P., Galeckas A., Ducroquet F., Rauwel E. Selective photocurrent generation in HfO2 and carbon nanotube hybrid nanocomposites under ultra-violet and visible photoexcitations. Mater. Lett. 2019;246:45–48. doi: 10.1016/j.matlet.2019.03.030.
    1. Bobrinetskiy A.I., Knezevic N.Z. Graphene-based biosensors for on-site detection of contaminants in food. Anal. Methods. 2018;10:5061–5070. doi: 10.1039/C8AY01913D.
    1. Peña-Bahamonde J., Nguyen H.N., Fanouraki S.K., Rodriques D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018;16:75. doi: 10.1186/s12951-018-0400-z.
    1. Campbell E., Hasan M.T., Pho C., Callaghan K., Naumov A.V. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci. Rep. 2019;9:416. doi: 10.1038/s41598-018-36617-4.
    1. Maiti D., Tong X., Mou X., Yang K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol. 2019;9:1401. doi: 10.3389/fphar.2018.01401.
    1. Plachá D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758.
    1. Mohamed R.M., Shawky A. CNT supported Mn-doped ZnO nanoparticles: Simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light. Appl. Nanosci. 2018;8:1179–1188. doi: 10.1007/s13204-018-0742-8.
    1. Tie W., Bhattacharyya S.S., Wang Y., He W., Lee S.H. Facile in-situ synthesis of a zinc oxide crystals/few-layered graphene flake composite for enhanced photocatalytic performance. J. Photochem. Photobiol. A. 2017;348:89–95. doi: 10.1016/j.jphotochem.2017.08.005.
    1. Wang F., Zhou Y., Pan X., Lu B., Huang J., Ye Z. Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide. Phys. Chem. Chem. Phys. 2018;20:6959–6969. doi: 10.1039/C7CP06909J.
    1. Polat E.O., Balci O., Kakenov N., Uzlu H.B., Kocabas C., Dahiya R. Synthesis of large area graphene for high performance in flexible optoelectronic devices. Sci. Rep. 2015;5:16744. doi: 10.1038/srep16744.
    1. Moreno-Bárcenas A., Perez-Robles J.F., Vorobiev Y.V., Ornelas-Soto N., Mexicano A., García A.G. Graphene synthesis using a CVD reactor and a discontinuous feed of gas precursor at atmospheric pressure. J. Nanomater. 2018;2018:3457263. doi: 10.1155/2018/3457263.
    1. Chen M., Haddon R.C., Yan R., Bekyarova E. Advances in transferring chemical vapor deposition graphene: A review. Mater. Horiz. 2017;4:1054–1063. doi: 10.1039/C7MH00485K.
    1. Knapp M., Hoffmann R., Cimalla V., Ambacher O. Wettability investigations and wet transfer enhancement of large-area CVD-graphene on aluminum nitride. Nanomaterials. 2017;7:226. doi: 10.3390/nano7080226.
    1. Guerrero-Contreras J., Caballero-Briones F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015;153:209–220. doi: 10.1016/j.matchemphys.2015.01.005.
    1. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G.
    1. Park S., An J., Potts J.R., Velamakanni A., Murali S., Ruoff R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon. 2011;49:3019–3023. doi: 10.1016/j.carbon.2011.02.071.
    1. Dave K., Park K.H., Dhayal M. Two-step process for programmable removal of oxygen functionalities of graphene oxide: Functional, structural and electrical characteristics. RSC. Adv. 2015;5:95657–95665. doi: 10.1039/C5RA18880F.
    1. Hayes W.I., Joseph P., Mughal M.Z., Papakonstantinou P. Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulfuric acid suspension and its electrochemical behavior. J. Solid State Electrochem. 2015;19:361–380. doi: 10.1007/s10008-014-2560-6.
    1. Pan X., Yang M.Q., Xu Y.J. Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—A unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 2014;16:5589–5599. doi: 10.1039/c3cp55038a.
    1. Wu D., An T., Li G., Wang W., Cai Y., Yip H.Y., Zhao H., Wong P.K. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite. Pt AAppl. Surf. Sci. 2015;358:137–145. doi: 10.1016/j.apsusc.2015.08.033.
    1. Osorio A.G., Silveira I.C., Bueno V.L., Bergmann C.P. H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl. Surf. Sci. 2008;255:2485–2489. doi: 10.1016/j.apsusc.2008.07.144.
    1. Chaudhary D., Singh S., Vankar V.D., Khare N. ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J. Photochem. Photobiol. A. 2018;351:154–161. doi: 10.1016/j.jphotochem.2017.10.018.
    1. Ganose A.M., Scanlon D.O. Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Mater. Chem. C. 2016;4:1467–1475. doi: 10.1039/C5TC04089B.
    1. Hamrouni A., Moussa N., Parrino F., Di Paola A., Houas A., Parmisano L. Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J. Mol. Catal. A Chem. 2014;390 doi: 10.1016/j.molcata.2014.03.018.
    1. Xie W., Li R., Xu Q. Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 2018;8:8752. doi: 10.1038/s41598-018-27135-4.
    1. Kang X., Liu S., Dai Z., He Y., Song X., Tan Z. Titanium dioxide: From engineering to applications. Catalysts. 2019;9:191. doi: 10.3390/catal9020191.
    1. Zhang F., Wang X., Liu H., Liu C., Wan Y., Long Y., Cai Z. Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 2019;9:2489. doi: 10.3390/app9122489.
    1. Maya-Trevino M.L., Guzman-Mar J.L., Hinojosa-Reyes L., Ramos-Delgado N.A., Maldonado M.I., Hernandez-Ramirez A. Activity of the ZnO–Fe2O3 catalyst on the degradation of Dicamba and 2,4-D herbicides using simulated solar light. Ceram. Int. 2014;40:8701–8708. doi: 10.1016/j.ceramint.2014.01.088.
    1. Guo L., Wang Y., He T. Photocatalytic reduction of CO2 over heterostructure semiconductors into value added chemicals. Chem. Rec. 2016;16:1918–1933. doi: 10.1002/tcr.201600008.
    1. Moniz S.J., Shevlin S.A., Martin D.J., Guo Z.X., Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015;8:731–759. doi: 10.1039/C4EE03271C.
    1. Wang Y., Wang Q., Zhan X., Wang F., Safdar M., He J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review. Nanoscale. 2013;5:8326–8339. doi: 10.1039/c3nr01577g.
    1. Sakib A.A., Masum S.M., Hinkis J., Islam R., Molla M.A. Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J. Compos. Sci. 2019;3:91. doi: 10.3390/jcs3030091.
    1. Isac L., Cazan C., Enesca A., Andronic L. Copper sulfide based heterojunctions as photocatalysts for dyes photodegradation. Front. Chem. 2019;7:694. doi: 10.3389/fchem.2019.00694.
    1. Kołodziejczak-Radzimska A., Jesionowski T. Zinc oxide–from synthesis to application: A review. Materials. 2014;7:2833–2881. doi: 10.3390/ma7042833.
    1. Hanif M.A., Lee I., Akter J., Islam M.A., Zahid A.A., Sapkota K.P., Hahn J.R. Enhanced Photocatalytic and antibacterial performance of ZnO nanoparticles prepared by an efficient thermolysis method. Catalysts. 2019;9:608. doi: 10.3390/catal9070608.
    1. Baptista A., Silva F., Porteiro J., Míguez J., Pinto G. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings. 2018;8:402. doi: 10.3390/coatings8110402.
    1. Laurenti M., Cuda V. Porous zinc oxide thin Films: Synthesis approaches and applications. Coatings. 2018;8:67. doi: 10.3390/coatings8020067.
    1. Wen X., Zhang Q., Shao Z. Magnetron sputtering for ZnO:Ga scintillation film production and its application research status in nuclear detection. Crystals. 2019;9:263. doi: 10.3390/cryst9050263.
    1. Kim M., Osone S., Kim T., Higashi H., Seto T. Synthesis of nanoparticles by laser ablation: A review. Kona Powder Part J. 2017;34:80–90. doi: 10.14356/kona.2017009.
    1. Wisz G., Virt I., Sagan P., Potera P., Yavorskyi R. Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. 2017;12:253. doi: 10.1186/s11671-017-2033-9.
    1. Luo C.Q., Ling F.C., Rahman M.A., Phillips M., Ton-That C., Liao C., Shih K., Lin J., Tam H.W., Djurisic A.B., et al. Surface polarity control in ZnO films deposited by pulsed laser deposition. Appl. Surf. Sci. 2019;483:1129–1135. doi: 10.1016/j.apsusc.2019.03.228.
    1. Kaassamani S., Kassem W., Tabbal M. X-ray diffraction lineshape analysis of pulsed laser deposited ZnO nano-structured thin films. Appl. Surf. Sci. 2019;473:298–302. doi: 10.1016/j.apsusc.2018.12.089.
    1. Sportelli M.C., Izzi M., Volpe A., Clemente M., Picca R.A., Ancona A., Lugarà P.M., Palazzo G., Cioffi N. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics. 2018;7:67. doi: 10.3390/antibiotics7030067.
    1. Ostrowski R., Barcikowski S., Marczak J., Ostendorf A., Strzelec M., Walter J. Health risks caused by particulate emission during laser cleaning. In: Nimmrichter J., Kautek W., Schreiner M., editors. Lasers in the Conservation of Artworks, Springer Proceedings in Physics, Madrid, Spain, 17–21 September 2007. Volume 116 Springer; Berlin/Heidelberg, Germany: 2007.
    1. Rauwel E., Willinger M.G., Ducroquet F., Rauwel P., Matko I., Kiselev D., Pinna N. Carboxylic acids as oxygen sources for the atomic layer deposition of high-κ metal oxides. J. Phys. Chem. C. 2008;112:12754–12759. doi: 10.1021/jp8037363.
    1. Lu Y., Hsiech C., Su G. The role of ALD-ZnO seed layers in the growth of ZnO nanorods for hydrogen sensing. Micromachines. 2019;10:491. doi: 10.3390/mi10070491.
    1. Laube J., Nübling D., Beh H., Gutsch S., Hiller D., Zacharias M. Resistivity of atomic layer deposition grown ZnO: The influence of deposition temperature and post-annealing. Thin Solid Films. 2016;603:377–381. doi: 10.1016/j.tsf.2016.02.060.
    1. Lee B.J., Jo S.I., Jeong G.H. Synthesis of ZnO nanomaterials using low-cost compressed air as microwave plasma gas at atmospheric pressure. Nanomaterials. 2019;9:942. doi: 10.3390/nano9070942.
    1. Yang P., Yan H., Mao S., Russo R., Johnson T., Saykally R., Morris N., Pham J., He R., Cho H.J. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002;12:323–331. doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>;2-G.
    1. Wan H., Ruda H. A study of the growth mechanism of CVD-grown ZnO nanowires. J. Mater. Sci. Mater. Electron. 2010;21:1014–1019. doi: 10.1007/s10854-010-0118-7.
    1. Tang C., Spencer M.J., Barnard A.S. Activity of ZnO polar surfaces: An insight from surface energies. Phys. Chem. Chem. Phys. 2014;16:22139. doi: 10.1039/C4CP03221G.
    1. Gao P.X., Ding Y., Wang Z.L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Lett. 2003;3:1315–1320. doi: 10.1021/nl034548q.
    1. Zhao X., Shaymurat T., Pei T., Bai L., Cai B., Tong Y., Tang Q., Liu Y. Low-temperature, catalyst-free vapor–solid growth of ultralong ZnO nanowires. Mater. Chem. Phys. 2012;136:455–459. doi: 10.1016/j.matchemphys.2012.07.008.
    1. Hedrich C., Haugg S., Pacarizi L., Furlan K.P., Blick R.H., Zierold R. Low-temperature vapor-solid growth of ZnO nanowhiskers for electron field emission. Coatings. 2019;9:698. doi: 10.3390/coatings9110698.
    1. Ding Y., Gao P.X., Wang Z.L. Catalyst−nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO. J. Am. Chem. Soc. 2004;126:2066–2072. doi: 10.1021/ja039354r.
    1. Kong X.Y., Wang Z.L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 2003;3:1625–1631. doi: 10.1021/nl034463p.
    1. Uekawa N., Yamashita R., Wu Y.J., Kakegawa K. Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(OH)42− ions. Phys. Chem. Chem. Phys. 2004;6:442–446. doi: 10.1039/b310306d.
    1. He G., Huang B., Lin Z., Yang W., He Q., Li L. Morphology transition of ZnO nanorod arrays synthesized by a two-step aqueous solution method. Crystals. 2018;8:152. doi: 10.3390/cryst8040152.
    1. Akhtar M.J., Ahamed M., Kumar S., Khan M.M., Ahmad J., Alrokayan S.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 2012;7:845–857. doi: 10.2147/IJN.S29129.
    1. Cao D., Gong S., Shu X., Zhu D., Liang S. Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process. Nanoscale Res. Lett. 2019;14:210. doi: 10.1186/s11671-019-3038-3.
    1. Ali A., Ambreen S., Javed R., Tabassum S., Haq I.U., Zia M. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Mater. Sci. Eng. C. 2017;74:137–145. doi: 10.1016/j.msec.2017.01.004.
    1. Pourrahimi A.M., Liu D., Pallon L.K., Andersson R.L., Abad A.M., Lagaron J.M., Hedenqvist M.S., Strom V., Gedde U.W., Olsson R.T. Water-based synthesis and cleaning methods for high purity ZnO nanoparticles—Comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv. 2014;4:35568–35577. doi: 10.1039/C4RA06651K.
    1. Nithya K., Kalyanasundharam S. Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activity. OpenNano. 2019;4:100024. doi: 10.1016/j.onano.2018.10.001.
    1. Kumar B., Smita K., Cumbal L., Debut A. Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg. Chem. Appl. 2014;2014:523869. doi: 10.1155/2014/523869.
    1. Nava O.J., Soto-Robles C.A., Gómez-Gutiérrez C.M., Vilchis-Nestor A.R., Castro-Beltrán A., Olivas A., Luque P.A. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 2017;1147:1–6. doi: 10.1016/j.molstruc.2017.06.078.
    1. Thi T.U., Nguyen T.T., Thi Y.D., Thi K.H., Phan B.T., Pham K.N. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 2020;10:23899. doi: 10.1039/d0ra04926c.
    1. Rupa E.J., Kaliraj L., Abid S., Yang D.C., Jung S.K. Synthesis of a zinc oxide nanoflower photocatalyst from sea buckthorn fruit for degradation of industrial dyes in wastewater treatment. Nanomaterials. 2019;9:1692. doi: 10.3390/nano9121692.
    1. Liu Z., Ya J., Lei E. Effects of substrates and seed layers on solution growing ZnO nanorods. J. Solid State Electrochem. 2010;14:957–963. doi: 10.1007/s10008-009-0894-2.
    1. Tlemcani T.S., Justeau C., Nadaud K., Poulin-Vittrant G., Alquier D. Deposition time and annealing effects of ZnO seed layer on enhancing vertical alignment of piezoelectric ZnO nanowires. Chemosensors. 2019;7:7. doi: 10.3390/chemosensors7010007.
    1. Karim S.S., Takamura Y., Tue P.T., Tung N.T., Kazmi J., Dee C.F., Majlis B.Y., Mohamed M.A. Developing conductive highly ordered zinc oxide nanorods by acetylacetonate-assisted growth. Materials. 2020;13:1136. doi: 10.3390/ma13051136.
    1. Matei A., Dumitrescu L., Cernica I., Tucureanu V., Mihalache I., Bita B., Danila M., Manciulea I. Study of the influence of capping agents on the structural and optical properties of ZnO nanostructures. J. Optoelectron. Adv. M. 2015;17:952–957.
    1. Ramimoghadam D., Hussein M.Z., Taufiq-Yap Y.H. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 2012;13:13275–13293. doi: 10.3390/ijms131013275.
    1. Thilagavathi T., Geetha D. Nano ZnO structures synthesized in presence of anionic and cationic surfactant under hydrothermal process. Appl. Nanosci. 2014;4:127–132. doi: 10.1007/s13204-012-0183-8.
    1. Zhang Y., Newton B., Lewis E., Fu P.P., Kafoury R., Ray P.C., Yu H. Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicol Vitr. 2015;29:762–768. doi: 10.1016/j.tiv.2015.01.017.
    1. Fukui H., Iwahashi H., Nishio K., Hagihara Y., Yoshida Y., Horie M. Ascorbic acid prevents zinc oxide nanoparticle—Induced intracellular oxidative stress and inflammatory responses. Toxicol. Ind. Health. 2017;33:687–695. doi: 10.1177/0748233717707361.
    1. Hossain A., Abdalla Y., Ali M.A., Masum M.M., Li B., Sun G., Meng Y., Wang Y., An Q. Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules. 2019;9:863. doi: 10.3390/biom9120863.
    1. Dong J., Wu J., Hao H., Xing J., Liu H., Gao H. Synthesis of ZnO nanocrystals and application in inverted polymer solar cells. Nanoscale Res. Lett. 2017;12:529. doi: 10.1186/s11671-017-2283-6.
    1. Qiu J., Weng B., Zhao L., Chang C., Shi Z., Li X., Kim H.K., Hwang Y.H. Synthesis and characterization of flower-like bundles of ZnO nanosheets by a surfactant-free hydrothermal process. J. Nanomater. 2014;2014:281461. doi: 10.1155/2014/281461.
    1. Napi M.L., Sultan S.M., Ismail R., Ahmad M.K., Chai G.M. Optimization of a hydrothermal growth process for low resistance 1D fluorine-doped zinc oxide nanostructures. J. Nanomater. 2019;2019:4574507. doi: 10.1155/2019/4574507.
    1. Zhou Q., Wen J.Z., Zhao P., Anderson W.A. Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst. Nanomaterials. 2017;7:9. doi: 10.3390/nano7010009.
    1. Zare M., Namratha K., Byrappa K., Surendra D.M., Yallappa S., Hungund B. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J. Mater. Sci. Technol. 2018;34:1035–1043. doi: 10.1016/j.jmst.2017.09.014.
    1. Agnihotri S., Bajaj G., Mukherji S., Mukherji S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale. 2015;7:7415–7429. doi: 10.1039/C4NR06913G.
    1. Garino N., Limongi T., Dumontel B., Canta M., Racca L., Laurenti M., Castellino M., Casu A., Falqui A., Cauda V. A microwave-assisted synthesis of zinc oxide nanocrystals finely tuned for biological applications. Nanomaterials. 2019;9:212. doi: 10.3390/nano9020212.
    1. Wojnarowicz J., Chudoba T., Gierlotka S., Lojkowski W. Effect of microwave radiation power on the size of aggregates of ZnO NPs prepared using microwave solvothermal synthesis. Nanomaterials. 2018;8:343. doi: 10.3390/nano8050343.
    1. Sounart T.L., Liu J., Voight J.A., Hoe M., Spoerke E.D., McKenzie B. Secondary nucleation and growth of ZnO. J. Am. Chem. Soc. 2007;129:15786–15793. doi: 10.1021/ja071209g.
    1. Pung S.Y., Lee W.P., Aziz A. Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. 2012;2012:608183. doi: 10.1155/2012/608183.
    1. Zhong L., Yun K. Graphene oxide-modified ZnO particles: Synthesis, characterization, and antibacterial properties. Int. J. Nanomed. 2015;10:79–92. doi: 10.2147/IJN.S88319.
    1. Tuan P.V., Phuong T.T., Tan V.T., Nguyen S.X., Khiem N. In-situ hydrothermal fabrication and photocatalytic behavior of ZnO/reduced graphene oxide nanocomposites with varying graphene oxide concentrations. Mater. Sci. Semicond. Process. 2020;115:105114. doi: 10.1016/j.mssp.2020.105114.
    1. Wang Y.W., Cao A., Jiang Y., Zhang X., Liu J.H., Liu Y., Wang H. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces. 2014;6:2791–2798. doi: 10.1021/am4053317.
    1. Rajveer R.S., Sharma V., Ronin R.S., Gupta D.K., Srivastava S., Agrawal K., Vijay Y.K. Synthesis, characterization and enhanced antimicrobial activity of reduced graphene oxide-zinc oxide nanocomposite. Mater. Res. Express. 2017;4:025401. doi: 10.1088/2053-1591/aa5bff.
    1. Zhang P., Li Z., Zhang S., Shao G. Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ Mater. 2018;5:1–12. doi: 10.1002/eem2.12001.
    1. Hsueh Y.-H., Hsieh C.-T., Chiu S.-T., Tsai P.-H., Liu C.-Y., Ke W.-J. Antibacterial property of composites of reduced graphene oxide with nano-silver and zinc oxide nanoparticles synthesized using a microwave-assisted approach. Int. J. Mol. Sci. 2019;20:5394. doi: 10.3390/ijms20215394.
    1. Prema D., Prakash J., Vignesh S., Veluchamy P., Ramachandran C., Samal D.B., Oh D.H., Sahabudeen S., Venkatasubbu G.D. Mechanism of inhibition of graphene oxide/zinc oxide nanocomposite against wound infection causing pathogens. Appl. Nanosci. 2020;10:827–849. doi: 10.1007/s13204-019-01152-9.
    1. Khan M.F., Ansari A.H., Hameedullah M., Ahmad E., Husain F.M., Zia Q., Baig U., Zaheer M., Alam M.M., Khan A.M., et al. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Sci. Rep. 2016;6:27689. doi: 10.1038/srep27689.
    1. Danks A.E., Hall S.R., Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016;3:91–112. doi: 10.1039/C5MH00260E.
    1. Iannaccone G., Bernardi A., Suriano R., Bianchi C.L., Levi M., Turri S., Griffini G. The role of sol–gel chemistry in the low temperature formation of ZnO buffer layers for polymer solar cells with improved performance. RSC Adv. 2016;6:46915–46924. doi: 10.1039/C6RA03344J.
    1. Deshmukh R., Niederberger M. Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents. Chem. Eur. J. 2017;23:8542–8570. doi: 10.1002/chem.201605957.
    1. Davis K., Yarbrough R., Froeschle M., White J., Rathnayake H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape controlled crystal growth. RSC Adv. 2019;9:14638. doi: 10.1039/C9RA02091H.
    1. Haque M.J., Bellah M.M., Hassan M.R., Rahman S. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express. 2020;1:010007. doi: 10.1088/2632-959X/ab7a43.
    1. Rodrigues E.S., Silva M.S., Azevedo W.M., Feitosa S.S., Stingl A., Farias P.M. ZnO nanoparticles with tunable bandgap obtained by modified Pechini method. Appl. Phys. A. 2019;125:504. doi: 10.1007/s00339-019-2805-4.
    1. Hingorani S., Pillai V., Kumar P., Multani M.S., Shah D.O. Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies. Mater. Res. Bull. 1993;28:1303–1310. doi: 10.1016/0025-5408(93)90178-G.
    1. Pineda-Reyes A.M., Olvera M. Synthesis of ZnO nanoparticles from water-in-oil (w/o) microemulsions. Mater. Chem. Phys. 2018;203:141–147. doi: 10.1016/j.matchemphys.2017.09.054.
    1. Bumajdad A., Madkour M. In situ growth of ZnO nanoparticles in precursor-insensitive water-in-oil microemulsion as soft nanoreactors. Nanoscale Res. Lett. 2015;10:19. doi: 10.1186/s11671-015-0730-9.
    1. Loh J.H., Samanta A.K., Heng P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. 2015;10:255–274. doi: 10.1016/j.ajps.2014.12.006.
    1. Manzoor U., Siddique S., Ahmed R., Noreen Z., Bokhari H., Ahmad I. Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS ONE. 2016;11:e0154704. doi: 10.1371/journal.pone.0154704.
    1. Soldano G.J., Zanotto F.M., Mariscal M.M. Mechanochemical stability of sub-nm ZnO chains. Phys. Chem. Chem. Phys. 2016;18:7688–7694. doi: 10.1039/C5CP07797D.
    1. Arsalani N., Bazazi S., Abuali M., Jodeyri S. A new method for preparing ZnO/CNT nanocomposites with enhanced photocatalytic degradation of malachite green under visible light. J. Photochem. Photobiol. A. 2020;389:112207. doi: 10.1016/j.jphotochem.2019.112207.
    1. Mohd Yusof H., Mohamad R., Zaidan U.H., Rahman N.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Animal Sci. Biotechnol. 2019;10:57. doi: 10.1186/s40104-019-0368-z.
    1. Tiwari V., Mishra N., Gadani K., Solanki P.S., Shah N.A., Tiwari M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 2018;9:1218. doi: 10.3389/fmicb.2018.01218.
    1. Gold K., Slay B., Knackstedt M., Gaharwar A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Ther. 2018;1:1700033. doi: 10.1002/adtp.201700033.
    1. Ahmed B., Solanki B., Zaidi A., Khan M.S., Musarrat J. Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: Insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicol. Res. 2019;8:246–261. doi: 10.1039/C8TX00267C.
    1. Omar F.M., Aziz H.A., Stoll S. Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects. J. Colloid Sci. Biotechnol. 2014;3:1–10. doi: 10.1166/jcsb.2014.1072.
    1. Tripathy A., Sen P., Su B., Briscoe W.H. Natural and bioinspired nanostructured bactericidal surfaces. Adv. Colloid Interface Sci. 2017;248:85–104. doi: 10.1016/j.cis.2017.07.030.
    1. Caudill E.R., Hernandez R.T., Johnson K.P., O’Rourke J.T., Zhu L., Haynes C.L., Feng V., Pedersen J.A. Wall teichoic acids govern cationic gold nanoparticle interaction with Gram-positive bacterial cell walls. Chem. Sci. 2020;11:4106–4118. doi: 10.1039/C9SC05436G.
    1. Bertani B., Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8 doi: 10.1128/ecosalplus.ESP-0001-2018.
    1. Botos I., Noinaj N., Buchanan S.K. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Philos. Trans. R. Soc. B. 2017;372:20160224. doi: 10.1098/rstb.2016.0224.
    1. Pace N.J., Weerapana E. Zinc-binding cysteines: Diverse functions and structural Motifs. Biomolecules. 2014;4:419–434. doi: 10.3390/biom4020419.
    1. Ishida T. Antibacterial mechanism of bacteriolyses of bacterial cell walls by zinc (II) ion induced activations of PGN autolysins, and DNA damages. J. Genes Proteins. 2017;1:1.
    1. Kadiyala U., Turali-Emre E.S., Bahng J.H., Kotov N.A., VanEpps J.S. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA) Nanoscale. 2018;10:4927–4939. doi: 10.1039/C7NR08499D.
    1. Dutta R.K., Nenavathu B.P., Gangishetty M.K., Reddy A.V. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces. 2012;94:143–150. doi: 10.1016/j.colsurfb.2012.01.046.
    1. Stark G. Functional consequences of oxidative membrane damage. J. Membrane Biol. 2005;205:1–16. doi: 10.1007/s00232-005-0753-8.
    1. Arakha M., Salem M., Mallick B.C., Jha S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 2015;5:9578. doi: 10.1038/srep09578.
    1. Singh R., Cheng S., Singh S. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech. 2020;10:66. doi: 10.1007/s13205-020-2054-4.
    1. Hirota K., Sugimoto M., Kato M., Tsukagoshi K., Tanigawa T., Sugimoto H. Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 2010;36:497–506. doi: 10.1016/j.ceramint.2009.09.026.
    1. Leung Y., Xu X., Ma A., Liu F., Ng A.M., Shen Z., Gethings L.A., Guo M.Y., Djurisic A.B., Lee P.K.H., et al. Toxicity of ZnO and TiO2 to Escherichia coli cells. Sci. Rep. 2016;6:35243. doi: 10.1038/srep35243.
    1. Jiang Y., Zhang L., Wen D., Ding Y. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Mater. Sci. Eng. C. 2016;69:1361–1366. doi: 10.1016/j.msec.2016.08.044.
    1. Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27:4020–4028. doi: 10.1021/la104825u.
    1. Abbasi B.H., Shah M., Hashmi S.S., Nazir M., Naz S., Ahmad W., Khan I.U., Hano C. Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum) Nanomaterials. 2019;9:1171. doi: 10.3390/nano9081171.
    1. Zare M., Namratha K., Alghamdi S., Mohammad Y.H., Hezam A., Zare M., Drmosh Q.A., Byrappa K., Chandrashekar B.N., Ramakrishna S., et al. Novel green biomimetic approach for synthesis of ZnO-Ag nanocomposite; antimicrobial activity against food-borne pathogen, biocompatibility and solar photocatalysis. Sci. Rep. 2019;9:8303. doi: 10.1038/s41598-019-44309-w.
    1. Verma R., Chauhan A., Shandilya M., Li X., Kumar R., Kulshrestha S. Antimicrobial potential of ag-doped ZnO nanostructure synthesized by the green method using moringa oleifera extract. J. Environ. Chem. Eng. 2020;8:103730. doi: 10.1016/j.jece.2020.103730.
    1. Zhang H., Chen B., Jiang H., Wang C., Wang H., Wang X. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials. 2011;32:1906–1914. doi: 10.1016/j.biomaterials.2010.11.027.
    1. Chang J.S., Strunk J., Chong M.N., Poh P.E., Ocon J.D. Multi-dimensional zinc oxide (ZnO) nanoarchitectures as efficient photocatalysts: What is the fundamental factor that determines photoactivity in ZnO? J. Hazard. Mater. 2020;381:120958. doi: 10.1016/j.jhazmat.2019.120958.
    1. Hong H., Shi J., Yang Y., Zhang Y., Engle J.W., Nickles R.J., Wang X., Cai W. Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett. 2011;11:3744–3750. doi: 10.1021/nl201782m.
    1. Sadhukhan P., Kundu M., Rana S., Kumar R., Das J., Sil P.C. Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol. Rep. 2019;6:176–185. doi: 10.1016/j.toxrep.2019.01.006.
    1. Jeong E., Kim C.I., Byun J., Lee J., Kim H.E., Kim E.J., Choi K.J., Hong S.W. Quantitative evaluation of the antibacterial factors of ZnO nanorod arrays under dark conditions: Physical and chemical effects on Escherichia coli inactivation. Sci. Total Environ. 2020;712:136574. doi: 10.1016/j.scitotenv.2020.136574.
    1. Li G.R., Hu T., Pan G.L., Yan T.Y., Gao X.P., Zhu H.Y. Morphology−function relationship of ZnO: Polar planes, oxygen vacancies, and activity. J. Phys. Chem. C. 2008;112:11859–11864. doi: 10.1021/jp8038626.
    1. Tu Y., Chen S., Li X., Gorbaciova J., Gillin W.P., Krause S., Briscoe J. Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behavior. J. Mater. Chem. C. 2018;6:1815–1821. doi: 10.1039/C7TC04284A.
    1. Tam K.H., Cheung C.K., Leung Y.H., Djurisic A.B., Ling C.C., Beling C.D., Fung S., Kwok W.M., Chan W.K., Philips D.L., et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B. 2006;110:20865–20871. doi: 10.1021/jp063239w.
    1. Cunningham M.W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 2000;13:470–511. doi: 10.1128/CMR.13.3.470.
    1. Hennigham A., Dohrmann S., Nizet V., Cole J.N. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol. Rev. 2015;39:488–508. doi: 10.1093/femsre/fuu009.
    1. Akhavan O., Ghaderi E., Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication and inactivation by near-infrared irradiation. J. Phys. Chem. B. 2011;115:6279–6288. doi: 10.1021/jp200686k.
    1. Wang D., Zhao L., Ma H., Zhang H., Guo L.H. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: The role of superoxide radicals. Environ. Sci. Technol. 2017;51:10137–10145. doi: 10.1021/acs.est.7b00473.
    1. Guo B.L., Han P., Guo L.C., Cao Y.Q., Li A.D., Kong J.Z., Zhai H.F., Wu D. The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res. Lett. 2015;10:336. doi: 10.1186/s11671-015-1047-4.
    1. Vijayalakshmi K., Sivaraj D. Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 2015;5:68461–68469. doi: 10.1039/C5RA13375K.
    1. Qi K., Xing X., Zada A., Li M., Wang Q., Liu S.Y., Lin H., Wang G. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram. Int. 2020;46:1494–1502. doi: 10.1016/j.ceramint.2019.09.116.
    1. Kumar R., Anandan S., Hembram K., Rao T.N. Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications. ACS Appl. Mater. Interfaces. 2014;6:13138–13148. doi: 10.1021/am502915v.
    1. Zhang X., Qin J., Xue Y., Yu P., Zhang B., Wang L., Liu R. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014;4:4596. doi: 10.1038/srep04596.
    1. Fang J., Fan H., Ma Y., Wang J., Chang Q. Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Appl. Surf. Sci. 2015;332:47–54. doi: 10.1016/j.apsusc.2015.01.139.
    1. Prasanna V.K., Vijayaraghavan R. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO. Mater. Sci. Eng. C. 2017;77:1027–1034. doi: 10.1016/j.msec.2017.03.280.
    1. Sajjad M., Ullah I., Khan M.I., Khan J., Khan M.Y., Qureshi M.T. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 2018;9:1301–1309. doi: 10.1016/j.rinp.2018.04.010.
    1. Gupta J., Mohapatra J., Bahadur D. Visible light driven mesoporous Ag-embedded ZnO nanocomposites: Reactive oxygen species enhanced photocatalysis, bacterial inhibition and photodynamic therapy. Dalton Trans. 2017;46:685–696. doi: 10.1039/C6DT03713E.
    1. He W., Kim H.K., Wamer W.G., Melka D., Callahan J.H., Yin J.J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 2014;136:750–757. doi: 10.1021/ja410800y.
    1. Das S., Sinha S., Das B., Jayabalan R., Suar M., Mishra A., Tamhankar A.J., Lundborg C.S., Tripathy S.K. Disinfection of multidrug resistant Escherichia coli by solar-photocatalysis using Fe-doped ZnO nanoparticles. Sci. Rep. 2017;7:104. doi: 10.1038/s41598-017-00173-0.
    1. Grotel J., Pikula T., Siedliska K., Ruchomski L., Panek R., Wiertel M., Jartych E. Structure and hyperfine interactions of Fe-doped ZnO powder prepared by co-precipitation method. Acta Phys. Pol. A. 2018;134:1048–1052. doi: 10.12693/APhysPolA.134.1048.
    1. Cherifi Y., Chaouchi A., Lorgoilloux Y., Rguiti M., Kadri A., Courtois C. Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method. Process. Appl. Ceram. 2016;10:125–135. doi: 10.2298/PAC1603125C.
    1. Kadi M.W., McKinney D., Mohamed R.M., Mkhalid I.A., Sigmund W. Fluorine doped zinc oxide nanowires: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceram. Int. 2016;42:4672–4678. doi: 10.1016/j.ceramint.2015.11.052.
    1. Podporska-Carroll J., Myles A., Quilty B., McCormack D.E., Fagan R., Hinder S.J., Dionysiou D.D., Pillai S.C. Antibacterial properties of F-doped ZnO visible light photocatalyst. Pt AJ. Hazard. Mater. 2017;324:39–47. doi: 10.1016/j.jhazmat.2015.12.038.
    1. Pal S., Maiti S., Maiti U.N., Chattopadhyay K.K. Low temperature solution processed ZnO/CuO heterojunction photocatalyst for visible light induced photo-degradation of organic pollutants. CrystEngComm. 2015;17:1464–1476. doi: 10.1039/C4CE02159B.
    1. Mageshwari K., Nataraj D., Pal T., Sathyamoorthy R., Park J. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method. J. Alloys Compd. 2015;625:362–370. doi: 10.1016/j.jallcom.2014.11.109.
    1. Liu Z., Bai H., Sun D.D. Hierarchical CuO/ZnO membranes for environmental applications under the irradiation of visible light. Int. J. Photoenergy. 2012;2012:804840. doi: 10.1155/2012/804840.
    1. Sapkota K.P., Lee I., Hanif M.A., Islam M.A., Hahn J.R. Solar-light-driven efficient ZnO–single-walled carbon nanotube photocatalyst for the degradation of a persistent water pollutant organic dye. Catalysts. 2019;9:498. doi: 10.3390/catal9060498.
    1. Castilho C.J., Li D., Liu M., Liu Y., Gao H., Hurt R.H. Mosquito bite prevention through graphene barrier layers. Proc. Natl. Acad. Sci. USA. 2019;116:18304–18309. doi: 10.1073/pnas.1906612116.
    1. Kenry K., Lim Y.B., Nai M.H., Cao J., Loh K.P., Lim C.T. Graphene oxide inhibits malaria parasite invasion and delays parasitic growth in vitro. Nanoscale. 2017;9:14065–14073. doi: 10.1039/C7NR06007F.
    1. Paul B., Panigrahi A.K., Singh V., Singh S.G. A multi-walled carbon nanotube–zinc oxide nanofiber based flexible chemiresistive biosensor for malaria biomarker detection. Analyst. 2017;142:2128–2135. doi: 10.1039/C7AN00243B.
    1. Howard R.J., Uni S., Aikawa M., Aley S.B., Leech J.H., Lew A.M., Wellems T.E., Rener J., Taylor D.W. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. J. Cell Biol. 1986;103:1269–1277. doi: 10.1083/jcb.103.4.1269.
    1. Zhao C., Tan S.X., Xiao X., Qiu X.S., Pan J.Q., Tang Z.X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol. Trace Elem. Res. 2014;160:361–367. doi: 10.1007/s12011-014-0052-2.
    1. Wadhwa R., Aggarwal T., Thapliyal N., Kumar A., Yadav P., Kumari V., Reddy B.S., Chandra P., Maurya P.K. Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech. 2019;9:279. doi: 10.1007/s13205-019-1807-4.
    1. ASTM E2524-08 (2013): Standard Test Method for Analysis of Hemolytic Properties of Nanoparticles. American Society for Testing and Materials; West Conshohocken, PA, USA: 2013.
    1. ASTM F756: Standard Practice for Assessment of Hemolytic Properties of Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.
    1. Babu E.P., Subastri A., Suyavaran A., Premkumar K., Sujatha V., Aristatile B., Alshammari G.M., Dharuman V., Thirunavukkarasu C. Size dependent uptake and hemolytic effect of zinc oxide nanoparticles on erythrocytes and biomedical potential of ZnO-ferulic acid conjugates. Sci. Rep. 2017;7:4203. doi: 10.1038/s41598-017-04440-y.
    1. Kumar N., Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014;4:86–93. doi: 10.1016/j.btre.2014.09.002.
    1. Khan M., Naqvi A.H., Ahmad M. Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol. Rep. 2015;2:765–774. doi: 10.1016/j.toxrep.2015.02.004.
    1. Mahanta S., Prathap S., Ban D.K., Paul S. Protein functionalization of ZnO nanostructure exhibits selective and enhanced toxicity to breast cancer cells through oxidative stress-based cell death mechanism. J. Photochem. Photobiol. B. 2017;173:376–388. doi: 10.1016/j.jphotobiol.2017.06.015.
    1. Bian Y., Kim K., Ngo T., Kim I., Bae O.N., Lim K.M., Chung J.H. Silver nanoparticles promote procoagulant activity of red blood cells: A potential risk of thrombosis in susceptible population. Part. Fibre Toxicol. 2019;16:9. doi: 10.1186/s12989-019-0292-6.
    1. Mahalakshmi S., Hema N., Vijaya P.P. In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route—A comparative study. Bionanoscience. 2020;10:112–121. doi: 10.1007/s12668-019-00698-w.
    1. Jan H., Shah M., Usman H., Khan M.A., Zia M., Hano C., Abbasi B.H. Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora) Front. Mater. 2020;7:249. doi: 10.3389/fmats.2020.00249.
    1. Rajapriya M., Sharmili S.A., Baskar R., Balaji R., Alharbi N.S., Kadaikunnan S., Khaled J.M., Alanzi K.F., Vaseeharan B. Correction to: Synthesis and characterization of zinc oxide nanoparticles using Cynara scolymus leaves: Enhanced hemolytic, antimicrobial, antiproliferative, and photocatalytic activity. J. Clust. Sci. 2020;31:791–981. doi: 10.1007/s10876-019-01686-6.
    1. Vinotha V., Iswarya A., Thaya R., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Al-Anbr M.N., Vaseeharan B. Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. J. Photochem. Photobiol. B. 2019;197:111541. doi: 10.1016/j.jphotobiol.2019.111541.
    1. Rauf M.A., Oves M., Rehman F.U., Khan A.R., Husain N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 2019;116:108983. doi: 10.1016/j.biopha.2019.108983.
    1. Hirayama D., Iida T., Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 2018;19:92. doi: 10.3390/ijms19010092.
    1. Chang H., Ho C.C., Yang C.S., Chang W.H., Tsai M.H., Tsai H.T., Lin P. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. Exp. Toxicol. Pathol. 2013;65:887–896. doi: 10.1016/j.etp.2013.01.001.
    1. Alghsham R.S., Satpathy S.R., Bodduluri S.R., Hegde B., Jala V.R., Twal W., Burlison J.A., Sunkara M., Haribabu B. Zinc oxide nanowires exposure induces a distinct inflammatory response via CCL11-mediated eosinophil recruitment. Front. Immunol. 2019;10:2604. doi: 10.3389/fimmu.2019.02604.
    1. Shen C., James S.A., de Jonge M.D., Turney T.W., Wright P.F., Feltis B.N. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle–Exposed human immune cells. Toxicol. Sci. 2013;136:120–130. doi: 10.1093/toxsci/kft187.
    1. Song W., Zhang J., Guo J., Zhang J., Ding F., Li L., Sun Z. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 2010;199:389–397. doi: 10.1016/j.toxlet.2010.10.003.
    1. Johnson B.M., Fraietta J.A., Gracias D.T., Hope J.L., Stairiker C.J., Patel P.R., Mueller Y.M., McHugh M.D., Jablonowski L.J., Wheatley M.A., et al. Acute exposure to ZnO nanoparticles induces autophagic immune cell death. Nanotoxicology. 2015;9:737–748. doi: 10.3109/17435390.2014.974709.
    1. Roy R., Singh S.K., Chauhan L.K., Das M., Tripathi A., Dwivedi P.D. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol. Lett. 2014;227:29–40. doi: 10.1016/j.toxlet.2014.02.024.
    1. Yan G., Guo Y., Guo J., Wang W., Wang C., Wang X. N-Acetylcysteine attenuates lipopolysaccharide-Induced osteolysis by restoring bone remodeling balance via reduction of reactive oxygen species formation during osteoclastogenesis. Inflammation. 2020;43:1279–1292. doi: 10.1007/s10753-020-01207-y.
    1. Luo M., Shen C., Feltis B.N., Martin L.L., Hughes A.E., Wright P.F., Turney T.W. Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale. 2014;6:5791–5798. doi: 10.1039/C4NR00458B.
    1. Nagajyothi P.C., Cha S.J., Yang I.J., Sreekanth T.V., Kim K.J., Shin H.M. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B Biol. 2015;146:10–17. doi: 10.1016/j.jphotobiol.2015.02.008.
    1. Thatoi P., Kerry R.G., Gouda S., Das G., Pramanik K., Thatoi H., Patra J.K. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B Biol. 2016;163:311–318. doi: 10.1016/j.jphotobiol.2016.07.029.
    1. Liu H., Kang P., Liu Y., An Y., Hu Y., Jin X., Cao X., Qi Y., Ramesh T., Wang X. Zinc oxide nanoparticles synthesised from the Vernonia amygdalina shows the anti-inflammatory and antinociceptive activities in the mice model. Artif. Cells Nanomed. Biotechnol. 2020;48:1068–1078. doi: 10.1080/21691401.2020.1809440.

Source: PubMed

Подписаться