Transcranial red and near infrared light transmission in a cadaveric model

Jared R Jagdeo, Lauren E Adams, Neil I Brody, Daniel M Siegel, Jared R Jagdeo, Lauren E Adams, Neil I Brody, Daniel M Siegel

Abstract

Background and objective: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model.

Study design/materials and methods: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm.

Results: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions.

Conclusion: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts: Daniel Siegel: Photomedex – Scientific Advisory Board. Low level light therapy device provided by Photomedex. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. LED Stability Performance for Red…
Figure 1. LED Stability Performance for Red and Near Infrared Light over 5 minutes.
Output of red light and near infrared light from the LED device is relatively stable over time.
Figure 2. Percent Penetrance of Light through…
Figure 2. Percent Penetrance of Light through Coronal Sections of Cadaver Skull, Bone Only.
Near infrared light measurably penetrates cadaver skull, as compared to red light.
Figure 3. Percent Penetrance of Light through…
Figure 3. Percent Penetrance of Light through Sagittal Sections of Cadaver Skull with Intact Soft Tissue.
Near infrared light measurably penetrates cadaver skull with intact soft tissue, as compared to red light.
Figure 4. Percent Penetrance of Light through…
Figure 4. Percent Penetrance of Light through Various Concentrations of Blood.
Blood attenuates the transmission of both near infrared and red lights. When blood was diluted in normal saline to a concentration of 7%, representing physiologic conditions, transmission of near infrared light was decreased to 41%.
Figure 5. Percent Penetrance of Light through…
Figure 5. Percent Penetrance of Light through Various Media.
Water, saline, and cadaver fixative (Introfiant) have little effect on the transmission of near infrared and red lights.
Figure 6. Percent Penetrance of Light through…
Figure 6. Percent Penetrance of Light through Human Hand in vivo.
Transmission of near infrared light through a human hand is low, but quantifiable, and is greater than red light transmission.
Figure 7. Percent Penetrance of Light through…
Figure 7. Percent Penetrance of Light through Human Cheek in vivo.
Transmission of near infrared light through a human cheek is significant, and is greater than transmission of red light.

References

    1. Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, et al. (2007) Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 38: 1843–9.
    1. Byrnes James (2009) NATO Science for Peace and Security Series – B: Physics and Biophysics – Unexploded Ordnance Detection and Mitigation. The Netherlands: Springer. pp 21–22.
    1. Goldberg DJ, Amin S, Russell BA, Phelps R, Kellett N, et al. (2006) Combined 633-nm and 830-nm led treatment of photoaging skin. J Drugs Dermatol 5: 748–53.
    1. Danno K, Mori N, Toda K, Kobayashi T, Utani A (2001) Near infrared irradiation stimulates cutaneous wound repair: laboratory experiments on possible mechanisms. Photodermatol Photoimmunol Photomed 17: 261–5.
    1. Minatel DG, Frade MAC, Fanca SC (2009) Enwemeka (2009) Phototherapy Promotes Healing of Chronic Diabetic Leg Ulcers that Failed to Respond to Other Therapies. Lasers in Surgery and Medicine 41: 433–41.
    1. Schubert V (2001) Effects of Phototherapy on Pressure Ulcer Healing in Elderly Patients after a Falling Trauma: A Prospective Randomized, Controlled Study. Photodermatol Photoimmunol Photomed 17: 31–38.
    1. Yamazaki M, Miura Y, Tsuboi R, Ogawa H (2003) Linear polarized infrared irradiation using Super Lizer is an effective treatment for multiple-type alopecia areata. Int J Dermatol 42: 738–40.
    1. Waiz M, Saleh AZ, Hayani R, Jubory SO (2006) Use of the pulsed infrared diode laser (904 nm) in the treatment of alopecia areata. J Cosmet Laser Ther 8: 27–30.
    1. Yokoyama K, Oku T () Rheumatoid arthritis-affected Temporo-mandibular Joint Pain Analgesia by Linear Polarized near Infrared Irrradiation.
    1. Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, et al. (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19: 305–14.
    1. Leonard DR, Farooqi MH, Myers S (2004) Restoration of sensation, reduced pain, and improved balance in subjects with diabetic peripheral neuropathy: a double-blind, randomized, placebo-controlled study with monochromatic near infrared treatment. Diabetes Care 27: 168–72.
    1. Lapchak PA, Salgado KF, Chao CH, Zivin JA (2007) Transcranial near infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148: 907–14.
    1. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, et al. (2009) NeuroThera Effectiveness and Safety Trial-2 Investigators. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40: 1359–64.
    1. Samoilova KA, Bogacheva ON, Obolenskaya KD, Blinova MI, Kalmykova NV, et al. (2004) Enhancement of the blood growth promoting activity after exposure of volunteers to visible and infrared polarized light. Part I: stimulation of human keratinocyte proliferation in vitro. Photochem Photobiol Sci 3: 96–101.
    1. Samoi˘lova KI, Bogacheva ON, Obolenskaia KD, Blinova MI, Kalmykova NV, et al. (2003) [Enhancement of growth promoting activity of human blood on keratinocytes after its irradiation in vivo (transcutaneously) and in vitro with visible and infrared polarized light]. Tsitologiia 45: 596–605.
    1. Zhang R, Mio Y, Pratt PE, Lohr N, Warltier DC, et al. (2009) Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol 46: 4–14.
    1. Hirsch R, Anderson RR (2007) Principles of laser-skin interactions. In: Bolognia JL, Jorizzo JL, Rapini RP, editors. Dermatology: Second Edition. Philadelphia: Mosby. pp 2145–2152.
    1. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, et al. (2003) cDNA Microarray Analysis of Gene Expression Profiles in Human Fibroblast Cells Irradiated with Red Light. J Invest Dermatol 120: 849–57.
    1. Levy M (2004) Overview of the Heart, Blood Vessels, and Blood. In: Berne R, Levy M, Koeppen B, Stanton B, editors. Physiology 5th Edition. St. Louis: Mosby. pp 265–73.
    1. Chiappelli J, Chiappelli T (2008) Drinking grandma: the problem of embalming. J Environ Health 71: 24–8.
    1. Wan S, Parrish JA, Anderson RR, Madden M (1981) Transmittance of nonionizing radiation in human tissues. Photochem Photobiol 34: 679–81.
    1. Garn SM, Selby S, Young R (1954) Scalp thickness and the fat-loss theory of balding. AMA Arch Derm Syphilol 70: 601–8.
    1. Bachelard HS (1975) Energy utilized by neurotransmitters. In: Ingvar DH, Lassen NA, editors. Brain Work: The Coupling of Function, Metabolism, and Blood Flow in the Brain, Alfred Benzon Symposium VIII. New York: Academic Press. pp 79–81.
    1. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, et al. (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome C oxidase. J Biol Chem 280: 4761–71.
    1. Beauvoit B, Kitai T, Chance B (1994) Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach. Biophys J 67: 2501–10.
    1. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49: 1–17.
    1. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR (2010) Role of low-level laser therapy in neurorehabilitation. PM R2: s292–305.
    1. Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, Lampl Y, Streeter J, DeTaboada L, Chopp M (2006) Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37: 2620–4.
    1. Berrocal E, Sedarsky DL, Paciaroni ME, Meglinski IV, Linne MA (2009) Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation. Opt Express 17: 13792–809.
    1. Pandian PS, Kumaravel M, Singh M (2009) Multilayer imaging and compositional analysis of human male breast by laser reflectometry and Monte Carlo simulation. Med Biol Eng Comput 17: 1197–206.
    1. Giuliani A, Lorenzini L, Gallamini M, Massella A, Giardino L, et al. (2009) Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress. BMC Complementary and Alternative Medicine 9: 8.
    1. Rojas J, Lee J, John J, Gonzalez-Lima F (2008) Neuroprotective Effects of Near infrared Light in an In Vivo Model of Mitochronidal Optic Neuropathy. Journal of Neuroscience 25: 13511–13521.

Source: PubMed

Подписаться