Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4

Masayuki Arakawa, Tomoya Mita, Kosuke Azuma, Chie Ebato, Hiromasa Goto, Takashi Nomiyama, Yoshio Fujitani, Takahisa Hirose, Ryuzo Kawamori, Hirotaka Watada, Masayuki Arakawa, Tomoya Mita, Kosuke Azuma, Chie Ebato, Hiromasa Goto, Takashi Nomiyama, Yoshio Fujitani, Takahisa Hirose, Ryuzo Kawamori, Hirotaka Watada

Abstract

Objective: Exogenous administration of glucagon-like peptide-1 (GLP-1) or GLP-1 receptor agonists such as an exendin-4 has direct beneficial effects on the cardiovascular system. However, their effects on atherosclerogenesis have not been elucidated. The aim of this study was to investigate the effects of GLP-1 on accumulation of monocytes/macrophages on the vascular wall, one of the earliest steps in atherosclerogenesis.

Research design and methods: After continuous infusion of low (300 pmol . kg(-1) . day(-1)) or high (24 nmol . kg(-1) . day(-1)) dose of exendin-4 in C57BL/6 or apolipoprotein E-deficient mice (apoE(-/-)), we evaluated monocyte adhesion to the endothelia of thoracic aorta and arteriosclerotic lesions around the aortic valve. The effects of exendin-4 were investigated in mouse macrophages and human monocytes.

Results: Treatment with exendin-4 significantly inhibited monocytic adhesion in the aortas of C57BL/6 mice without affecting metabolic parameters. In apoE(-/-) mice, the same treatment reduced monocyte adhesion to the endothelium and suppressed atherosclerogenesis. In vitro treatment of mouse macrophages with exendin-4 suppressed lipopolysaccharide-induced mRNA expression of tumor necrosis factor-alpha and monocyte chemoattractant protein-1, and suppressed nuclear translocation of p65, a component of nuclear factor-kappaB. This effect was reversed by either MDL-12330A, a cAMP inhibitor or PKI(14-22), a protein kinase A-specific inhibitor. In human monocytes, exendin-4 reduced the expression of CD11b.

Conclusions: Our data suggested that GLP-1 receptor agonists reduced monocyte/macrophage accumulation in the arterial wall by inhibiting the inflammatory response in macrophages, and that this effect may contribute to the attenuation of atherosclerotic lesion by exendin-4.

Figures

FIG. 1.
FIG. 1.
Expression of GLP-1 receptor on macrophages. A: Expression of GLP-1 receptor in murine lung and liver, isolated murine islets, isolated murine macrophages (Mϕs), cultured murine endothelial cells (ECs), cultured murine smooth muscle cells (SMCs), human monocyte derived line, THP-1 cells, and HUVECs. B: Expression of GLP-1 receptor in human monocytes from healthy subjects. C: Immunohistochemical staining of GLP-1 receptor (green) and Mac-2, a marker of macrophages (red) in atherosclerotic lesions of apoE−/− mice. (A high-quality digital representation of this figure is available in the online issue.)
FIG. 2.
FIG. 2.
Exendin-4 reduced monocytic adhesion to the endothelium in C57BL/6 mice. A: Changes in body weight during treatment with exendin-4 in C57BL/6 mice (n = 6 each). B: Blood glucose concentrations during IPGTT after 24-day treatment with exendin-4 (n = 6 each). C: Plasma insulin levels during IPGTT after 24-day treatment with exendin-4 (n = 6 each). D: Results of insulin tolerance test in each group after 24-day treatment with exendin-4 (n = 6 each). E: The density of adherent Mac-2–positive cells on endothelial cells at branching areas in each group of mice after 28-day treatment (n = 6) with representative en face views of immunohistologic staining with Mac-2 antibody. Data are mean ± SEM. *P < 0.05 versus high-dose group, +P < 0.05 versus low-dose group. (A high-quality digital representation of this figure is available in the online issue.)
FIG. 3.
FIG. 3.
The metabolic effect of exendin-4 in apoE−/− mice. A: Changes in body weight during exendin-4 treatment in apoE−/− mice (n = 13). B: Blood glucose concentrations during IPGTT after 24-day treatment with exendin-4 (n = 6). C: Plasma insulin levels during IPGTT after 24-day treatment with exendin-4 (n = 6). D: Results of insulin tolerance test in each group after 24-day treatment with exendin-4 (n = 6). Data are mean ± SEM. *P < 0.01 versus high-dose group, +P < 0.01 versus low-dose group.
FIG. 4.
FIG. 4.
Exendin-4 reduced monocyte adhesion to the endothelium and atherosclerotic lesions in apoE−/− mice. A: En face immunohistochemical staining with Mac-2 antibody of the aorta of each group. The density of adherent Mac-2–positive cells on the endothelium at branching areas in each group of mice after 28-day treatment (n = 7) and representative en face views of immunohistologic staining with Mac-2 antibody. B: Aortas harvested from each group of mice after 28-day treatment were used for isolation of total RNA. The mRNA expression levels of ICAM-1 and VCAM-1 were determined by quantitative RT-PCR. Relative gene expression is displayed as the level of expression in the test mice relative to that in the control group (set at 1.0, n = 5–7). C: Representative histologic sections of the aortic sinuses stained with oil red O after 28-day treatment. The mean area of oil red O–positive lesions was determined (n = 20). Data are mean ± SEM. *P < 0.05 versus control group. (A high-quality digital representation of this figure is available in the online issue.)
FIG. 5.
FIG. 5.
Exendin-4 reduced the inflammatory response through cAMP signaling pathway in macrophages, and reduced the expression of CD11b in human monocytes. A: Peritoneal macrophages isolated from 8-week-old C57BL/6 mice were incubated with various concentrations of exendin-4 (0.03–3 nmol/l) for 1 h followed by treatment with LPS (1 μg/ml) for 1 h. Then, macrophages were used for isolation of total RNA. The mRNA expression levels of TNF-α and MCP-1 were determined by quantitative RT-PCR. Relative gene expression is displayed as the level of expression in peritoneal macrophages without the addition of exendin-4 set at 1.0 (n = 4–5). B: Peritoneal macrophages were preincubated with 5 μmol/l MDL-12330A for 30 min before the addition of 0.3 nmol/l exendin-4 and then incubated with LPS (1 μg/ml) for 1 h. Then, macrophages were used for isolation of total RNA (n = 4–6). C: Peritoneal macrophages were incubated with 0.3 nmol/l exendin-4 or 10 μmol/l forskolin for 1 h followed by LPS (1 μg/ml) for 1 h. Then, macrophages were used for isolation of total RNA (n = 4–5). D: Peritoneal macrophages were preincubated with 10 μmol/l PKI14-22 for 30 min before the addition of 0.3 nmol/l exendin-4 and then incubated with LPS (1 μg/ml) for 1 h. Then, macrophages were used for isolation of total RNA (n = 4–5). E: Peritoneal macrophages were preincubated with 5 μmol/l MDL-12330A for 30 min before the addition of 0.3 nmol/l exendin-4 and then incubated with LPS (1 μg/ml) for 1 h. Then, macrophages were used for isolation of nuclear protein extracts. The nuclear level of NF-κB p65 was determined by enzyme-linked immunosorbent assay (ELISA) (n = 3–4). F: Human monocytes isolated from healthy volunteers were incubated without or with various concentrations of exendin-4 (0.03–3 nmol/l) for 24 h. Then, the surface expression of CD11b was assessed by flow cytometry. Data are median fluorescence intensity relative to the control. *P < 0.05 versus the control group.

References

    1. Greig NH, Holloway HW, De Ore KA, Jani D, Wang Y, Zhou J, Garant MJ, Egan JM: Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations. Diabetologia 1999; 42: 45– 50
    1. Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, Taylor K, Kim D, Aisporna M, Wang Y, Baron AD: Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2003; 88: 3082– 3089
    1. Parkes DG, Pittner R, Jodka C, Smith P, Young A: Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism 2001; 50: 583– 589
    1. Dupré J, Behme MT, McDonald TJ: Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3469– 3473
    1. Szayna M, Doyle ME, Betkey JA, Holloway HW, Spencer RG, Greig NH, Egan JM: Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 2000; 141: 1936– 1941
    1. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109: 962– 965
    1. Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ: GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 2009; 58: 975– 983
    1. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM: Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005; 54: 146– 151
    1. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen YT, Shannon RP: Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004; 110: 955– 961
    1. Liu H, Dear AE, Knudsen LB, Simpson RW: A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol 2009; 201: 59– 66
    1. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117: 2340– 2350
    1. Richter G, Feddersen O, Wagner U, Barth P, Göke R, Göke B: GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol 1993; 265: L374– L381
    1. Nyström T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B, Sjöholm A: Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 2004; 287: E1209– E1215
    1. Ross R: Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115– 126
    1. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS: A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107: 1255– 1262
    1. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H: Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8: 325– 332
    1. Kobayashi M, Inoue K, Warabi E, Minami T, Kodama T: A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb 2005; 12: 138– 142
    1. Nomiyama T, Nakamachi T, Gizard F, Heywood EB, Jones KL, Ohkura N, Kawamori R, Conneely OM, Bruemmer D: The NR4A orphan nuclear receptor NOR1 is induced by platelet-derived growth factor and mediates vascular smooth muscle cell proliferation. J Biol Chem 2006; 281: 33467– 33476
    1. Azuma K, Watada H, Niihashi M, Otsuka A, Sato F, Kawasumi M, Shimada S, Tanaka Y, Kawamori R, Mitsumata M: A new en face method is useful to quantitate endothelial damage in vivo. Biochem Biophys Res Commun 2003; 309: 384– 390
    1. Mita T, Otsuka A, Azuma K, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mitsumata M, Kawamori R, Watada H: Swings in blood glucose levels accelerate atherogenesis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2007; 358: 679– 685
    1. Yamada H, Yoshida M, Nakano Y, Suganami T, Satoh N, Mita T, Azuma K, Itoh M, Yamamoto Y, Kamei Y, Horie M, Watada H, Ogawa Y: In vivo and in vitro inhibition of monocyte adhesion to endothelial cells and endothelial adhesion molecules by eicosapentaenoic acid. Arterioscler Thromb Vasc Biol 2008; 28: 2173– 2179
    1. Delgado M, Gonzalez-Rey E, Ganea D: The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 2005; 175: 7311– 7324
    1. Kumashiro N, Tamura Y, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mochizuki H, Kawamori R, Watada H: Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-1alpha in hepatic insulin resistance. Diabetes 2008; 57: 2083– 2091
    1. Baggio LL, Drucker DJ: Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131– 2157
    1. Brubaker PL, Drucker DJ: Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004; 145: 2653– 2659
    1. Delgado M, Ganea D: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit nuclear factor-kappa B-dependent gene activation at multiple levels in the human monocytic cell line THP-1. J Biol Chem 2001; 276: 369– 380
    1. Gedulin BR, Smith P, Prickett KS, Tryon M, Barnhill S, Reynolds J, Nielsen LL, Parkes DG, Young AA: Dose-response for glycaemic and metabolic changes 28 days after single injection of long-acting release exenatide in diabetic fatty Zucker rats. Diabetologia 2005; 48: 1380– 1385
    1. Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, Baron AD: Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2005; 62: 173– 181
    1. Brånén L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S: Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004; 24: 2137– 2142
    1. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998; 2: 275– 281
    1. Aiello RJ, Bourassa PA, Lindsey S, Weng W, Natoli E, Rollins BJ, Milos PM: Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 1999; 19: 1518– 1525
    1. Izeboud CA, Monshouwer M, van Miert AS, Witkamp RF: The beta-adrenoceptor agonist clenbuterol is a potent inhibitor of the LPS-induced production of TNF-alpha and IL-6 in vitro and in vivo. Inflamm Res 1999; 48: 497– 502
    1. Chong YH, Shin SA, Lee HJ, Kang JH, Suh YH: Molecular mechanisms underlying cyclic AMP inhibition of macrophage dependent TNF-alpha production and neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer's amyloid precursor protein. J Neuroimmunol 2002; 133: 160– 174
    1. Shames BD, McIntyre RC, Jr, Bensard DD, Pulido EJ, Selzman CH, Reznikov LL, Harken AH, Meng X: Suppression of tumor necrosis factor alpha production by cAMP in human monocytes: dissociation with mRNA level and independent of interleukin-10. J Surg Res 2001; 99: 187– 193
    1. Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M: Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol 2005; 174: 595– 599
    1. Mogi C, Tobo M, Tomura H, Murata N, He XD, Sato K, Kimura T, Ishizuka T, Sasaki T, Sato T, Kihara Y, Ishii S, Harada A, Okajima F: Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages. J Immunol 2009; 182: 3243– 3251
    1. Weber C, Erl W, Weber KS, Weber PC: HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 1997; 30: 1212– 1217

Source: PubMed

Подписаться