Effects of cosmetics on the skin microbiome of facial cheeks with different hydration levels

Hyo Jung Lee, Sang Eun Jeong, Soyoun Lee, Sungwoo Kim, Hyuntak Han, Che Ok Jeon, Hyo Jung Lee, Sang Eun Jeong, Soyoun Lee, Sungwoo Kim, Hyuntak Han, Che Ok Jeon

Abstract

Basic cosmetics was used by volunteers belonging to high (HHG) and low (LHG) hydration groups for 4 weeks, and bacterial communities and biophysical parameters in facial skin were analyzed. Hydration level increases and transepidermal water loss and roughness decreases were observed in both groups after cosmetic use. Bacterial diversity was greater in LHG than HHG, and increased after cosmetic use in both groups. Bray-Curtis dissimilarities that were higher in LHG than HHG increased in HHG after cosmetic use, whereas they decreased in LHG. The phyla Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes and the genera Propionibacterium, Ralstonia, Burkholderia, Staphylococcus, Corynebacterium, Cupriavidus, and Pelomonas were identified as common groups and they were not significantly different between LHG and HHG except for Propionibacterium that was more abundant in HHG. After cosmetic use, Propionibacterium, Staphylococcus, and Corynebacterium decreased, whereas Ralstonia, not a core genus, increased, as did KEGG categories of lipid metabolism and xenobiotics biodegradation and metabolism, suggesting that Ralstonia in skin may have the ability to metabolize cosmetics components. Bacterial communities after cosmetic use were different from those in both LHG and HHG before the cosmetic use, indicating that bacterial communities in LHG were not shifted to resemble those in HHG by cosmetics use.

Keywords: Propionibacterium; Ralstonia; LEfSe; cosmetics; facial skin microbiome; skin hydration.

© 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Changes in skin hydration value (a) and transepidermal water loss (b) following cosmetic use in facial cheek skin of the high hydration group (HHG) and low hydration group (LHG). Data in bar graphs are presented as means ± standard error, and the significance of differences is indicated by *p < .05; **,p < .01; and ***p < 0.001. A.U., arbitrary units; TEWL, transepidermal water loss
Figure 2
Figure 2
Changes in skin roughness following cosmetic use in facial cheek skin of the high hydration group (HHG) and low hydration group (LHG). Skin roughness parameters: Ra, arithmetic mean roughness (a); Rmax, maximum roughness (b); Rz, mean depth roughness (c); Rp, maximum profile peak height (d); Rv, maximum profile valley depth (e). Data in bar graphs are presented as means ± standard error, and the significance of differences is indicated by *p < .05
Figure 3
Figure 3
Box‐plots of Shannon–Weaver index (a) and Bray–Curtis dissimilarity (b) of bacterial 16S rRNA gene sequencing reads derived from the high hydration group (HHG) and low hydration group (LHG). The significance of differences between sampling groups is indicated by *p < .05; **p < 0.01; and ***p < .001
Figure 4
Figure 4
A principal component analysis score plot showing the change in bacterial communities after the use of cosmetics in facial cheek skin of the high hydration group (HHG) and low hydration group (LHG). PCA was performed using the relative abundance information at the genus level. The symbols in the ellipse represent bacterial communities in facial cheek skin of HHG and LHG just before the use of cosmetics
Figure 5
Figure 5
Mean abundances at the phylum level in facial cheek skin of high hydration group (HHG) and low hydration group (LHG) (a) and statistical box‐plot analysis for the relative abundance of Actinobacteria (b) and Proteobacteria (c). The mean abundances were the mean value of the relative abundance of each phylum in the sampling groups. Significant differences are indicated by *p < .05; **p < .01; and ***p < .001
Figure 6
Figure 6
Mean abundances at the genus level in facial cheek skin of high hydration group (HHG) and low hydration group (LHG) (a) and statistical box‐plot analysis for the relative abundance of Propionibacterium (b) and Ralstonia (c). The mean abundance was the mean value of the relative abundance of each genus in the sampling groups, and significant differences are indicated by *p < .05 and ***p < .001
Figure 7
Figure 7
Linear discriminant analysis effect size (LEfSe) analysis of bacterial groups with differential abundance between the high hydration group (HHG) and low hydration group (LHG) before cosmetic use (a) and comparing abundance before and after cosmetic use regardless of HHG and LHG (b). Significance levels for LEfSe were p < .05, and only bacterial groups with a linear discriminant analysis (LDA) score >3 are displayed
Figure 8
Figure 8
Linear discriminant analysis effect size (LEfSe) analysis of KEGG pathways with differential abundance between the high hydration group (HHG) and low hydration group (LHG) before cosmetic use (a) and comparing pathway abundance before and after cosmetic use regardless of HHG and LHG (b). Significance levels for LEfSe were p < .05, and only KEGG pathways with linear discriminant analysis (LDA) score >3 are displayed. Additional box‐plot analysis was performed for the representative KEGG pathways showing differential abundance to investigate the abundance change in KEGG pathways in response to cosmetic use in each hydration group (c). Significant differences are indicated by *p < .05; **p < .01; and ***p < 0.001

References

    1. Alexis, A. F. , & Alam, M. (2012). Racial and ethnic differences in skin aging: Implications for treatment with soft tissue fillers. Journal of Drugs in Dermatology, 11, s30–s32.
    1. Belkaid, Y. , & Segre, J. A. (2014). Dialogue between skin microbiota and immunity. Science, 346, 954–959.
    1. Björklund, S. , Engblom, J. , Thuresson, K. , & Sparr, E. (2013). Glycerol and urea can be used to increase skin permeability in reduced hydration conditions. European Journal of Pharmaceutical Sciences, 50, 638–645.
    1. Camargo, F. B. Jr , Gaspar, L. R. , & Maia Campos, P. M. (2011). Skin moisturizing effects of panthenol‐based formulations. Journal of Cosmetic Science, 62, 361.
    1. Chang, M. J. , Huang, H. C. , Chang, H. C. , & Chang, T. M. (2008). Cosmetic formulations containing Lithospermum erythrorhizon root extract show moisturizing effects on human skin. Archives of Dermatological Research, 300, 317–323.
    1. Chao, A. (1987). Estimating the population size for capture‐recapture data with unequal catchability. Biometrics, 43, 783–791.
    1. Cheng, Y. , Dong, Y. , Wang, J. , Dong, M. , Zou, Y. , Ren, D. , … Liu, W. (2009). Moisturizing and anti‐sebum secretion effects of cosmetic application on human facial skin. Journal of Cosmetic Science, 60, 7.
    1. Cole, J. R. , Wang, Q. , Cardenas, E. , Fish, J. , Chai, B. , Farris, R. J. , … Tiedje, J. M. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141–D145.
    1. Cook, T. H. , & Craft, T. J. (1985). Topographics of dry skin, non‐dry skin, and cosmetically treated dry skin as quantified by skin profilometry. Journal of the Society of Cosmetic Chemists, 36, 143–152.
    1. Cosseau, C. , Romano‐Bertrand, S. , Duplan, H. , Lucas, O. , Ingrassia, I. , Pigasse, C. , … Jumas‐Bilak, E. (2016). Proteobacteria from the human skin microbiota: Species‐level diversity and hypotheses. One Health, 2, 33–41.
    1. Costello, E. K. , Lauber, C. L. , Hamady, M. , Fierer, N. , Gordon, J. I. , & Knight, R. (2009). Bacterial community variation in human body habitats across space and time. Science, 326, 1694–1697.
    1. Edgar, R. C. , Haas, B. J. , Clemente, J. C. , Quince, C. , & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.
    1. Fierer, N. , Hamady, M. , Lauber, C. L. , & Knight, R. (2008). The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences, 105, 17994–17999.
    1. Findley, K. , Oh, J. , Yang, J. , Conlan, S. , Deming, C. , Meyer, J. A. , … Kong, H. H. (2013). Topographic diversity of fungal and bacterial communities in human skin. Nature, 498, 367–370.
    1. Fitz‐Gibbon, S. , Tomida, S. , Chiu, B. H. , Nguyen, L. , Du, C. , Liu, M. , … Modlin, R. L. (2013). Propionibacterium acnes strain populations in the human skin microbiome associated with acne. Journal of Investigative Dermatology, 133, 2152–2160.
    1. Flynn, T. C. , Petros, J. , Clark, R. E. , & Viehman, G. E. (2001). Dry skin and moisturizers. Clinics in Dermatology, 19, 387–392.
    1. Gao, Z. , Tseng, C. H. , Pei, Z. , & Blaser, M. J. (2007). Molecular analysis of human forearm superficial skin bacterial biota. Proceedings of the National Academy of Sciences, 104, 2927–2932.
    1. Ghosal, D. , Ghosh, S. , Dutta, T. K. , & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 7, 1369.
    1. Grice, E. A. , & Segre, J. A. (2011). The skin microbiome. Nature Reviews Microbiology, 9, 244
    1. Gribbon, E. M. , Cunliffe, W. J. , & Holland, K. T. (1993). Interaction of Propionibacterium acnes with skin lipids in vitro. Microbiology, 139, 1745–1751.
    1. Grice, E. A. (2015). The intersection of microbiome and host at the skin interface: Genomic‐and metagenomic‐based insights. Genome Research, 25, 1514–1520.
    1. Grice, E. A. , Kong, H. H. , Conlan, S. , Deming, C. B. , Davis, J. , Young, A. C. , … Turner, M. L. (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324, 1190–1192.
    1. Grice, E. A. , Kong, H. H. , Renaud, G. , Young, A. C. , Bouffard, G. G. , Blakesley, R. W. , … Turner, M. L. (2008). A diversity profile of the human skin microbiota. Genome Research, 18, 1043–1050.
    1. Hillion, M. , Mijouin, L. , Jaouen, T. , Barreau, M. , Meunier, P. , Lefeuvre, L. , … Feuilloley, M. G. (2013). Comparative study of normal and sensitive skin aerobic bacterial populations. Microbiologyopen, 2, 953–961.
    1. Kong, H. H. (2011). Skin microbiome: Genomics‐based insights into the diversity and role of skin microbes. Trends in Molecular Medicine, 17, 320–328.
    1. Kong, H. H. (2016). Details matter: Designing skin microbiome studies. Journal of Investigative Dermatology, 136, 900–902.
    1. Krutmann, J. (2009). Pre‐and probiotics for human skin. Journal of Dermatological Science, 54, 1–5.
    1. Kwiatkowska, M. , Franklin, S. E. , Hendriks, C. P. , & Kwiatkowski, K. (2009). Friction and deformation behaviour of human skin. Wear, 267, 1264–1273.
    1. Langille, M. G. , Zaneveld, J. , Caporaso, J. G. , McDonald, D. , Knights, D. , Reyes, J. A. , … Beiko, R. G. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31, 814–821.
    1. Lee, H. J. , Jung, J. Y. , Oh, Y. K. , Lee, S. S. , Madsen, E. L. , & Jeon, C. O. (2012). Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar‐coded pyrosequencing and 1H nuclear magnetic resonance spectroscopy. Applied and Environmental Microbiology, 78, 5983–5993.
    1. Leite e Silva, V. R. , Schulman, M. A. , Ferelli, C. , Gimenis, J. M. , Ruas, G. W. , Baby, A. R. , … Kaneko, T. M. (2009). Hydrating effects of moisturizer active compounds incorporated into hydrogels: In vivo assessment and comparison between devices. Journal of Cosmetic Dermatology, 8, 32–39.
    1. Leung, M. H. , Wilkins, D. , & Lee, P. K. (2015). Insights into the pan‐microbiome: Skin microbial communities of Chinese individuals differ from other racial groups. Scientific Reports, 5, 11845
    1. Linde, Y. W. , Bengtsson, A. , & Loden, M. (1989). ‘Dry'skin in atopic dermatitis. II A surface profilometry study. Acta Dermato‐Venereologica, 69, 315–319.
    1. Mahrhauser, D. , Nagelreiter, C. , Baierl, A. , Skipiol, J. , & Valenta, C. (2015). Influence of a multiple emulsion, liposomes and a microemulsion gel on sebum, skin hydration and TEWL. International Journal of Cosmetic Science, 37, 181–186.
    1. Mathieu, A. , Vogel, T. M. , & Simonet, P. (2014). The future of skin metagenomics. Research in Microbiology, 165, 69–76.
    1. Meisel, J. S. , Hannigan, G. D. , Tyldsley, A. S. , SanMiguel, A. J. , Hodkinson, B. P. , Zheng, Q. , & Grice, E. A. (2016). Skin microbiome surveys are strongly influenced by experimental design. Journal of Investigative Dermatology, 136, 947–956.
    1. Na, J. I. , Hwang, J. S. , Park, H. J. , Kim, D. H. , Park, W. S. , Youn, S. W. , … Park, K. C. (2010). A new moisturizer containing physiologic lipid granules alleviates atopic dermatitis. Journal of Dermatological Treatment, 21, 23–27.
    1. Nakatsuji, T. , Chiang, H. I. , Jiang, S. B. , Nagarajan, H. , Zengler, K. , & Gallo, R. L. (2013). The microbiome extends to subepidermal compartments of normal skin. Nature Communications, 4, 1431
    1. Nowacka, A. , Douezan, S. , Wadsö, L. , Topgaard, D. , & Sparr, E. (2012). Small polar molecules like glycerol and urea can preserve the fluidity of lipid bilayers under dry conditions. Soft Matter, 8, 1482–1491.
    1. Oh, J. , Byrd, A. L. , Deming, C. , Conlan, S. , Kong, H. H. , & Segre, J. A. , & NISC Comparative Sequencing Program . (2014). Biogeography and individuality shape function in the human skin metagenome. Nature, 514, 59
    1. Oh, J. , Byrd, A. L. , Park, M. , Kong, H. H. , & Segre, J. A. , & NISC Comparative Sequencing Program . (2016). Temporal stability of the human skin microbiome. Cell, 165, 854–866.
    1. Oh, J. , Freeman, A. F. , Park, M. , Sokolic, R. , Candotti, F. , Holland, S. M. , … NISC Comparative Sequencing Program . (2013). The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Research, 23, 2103–2114.
    1. Oksanen, J. , Blanchet, F. G. , Kindt, R. , Legendre, P. , Minchin, P. R. , O'Hara, R. B. , … Wagner, H . (2015). Vegan: community ecology package. R package vegan, vers. 2.2‐1. .
    1. Pappas, A. , Fantasia, J. , & Chen, T. (2013). Age and ethnic variations in sebaceous lipids. Dermato‐Endocrinology, 5, 319–324.
    1. Perez, G. I. P. , Gao, Z. , Jourdain, R. , Ramirez, J. , Gany, F. , Clavaud, C. , … Blaser, M. J. (2016). Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS ONE, 11, e0151990
    1. Proksch, E. , & Lachapelle, J. M. (2005). The management of dry skin with topical emollients–recent perspectives. Journal der Deutschen Dermatologischen Gesellschaft, 3, 768–774.
    1. Rawlings, A. V. , & Matts, P. J. (2005). Stratum corneum moisturization at the molecular level: An update in relation to the dry skin cycle. Journal of Investigative Dermatology, 124, 1099–1110.
    1. Rosenthal, M. , Goldberg, D. , Aiello, A. , Larson, E. , & Foxman, B. (2011). Skin microbiota: Microbial community structure and its potential association with health and disease. Infection, Genetics and Evolution, 11, 839–848.
    1. Roth, R. R. , & James, W. D. (1988). Microbial ecology of the skin. Annual Reviews in Microbiology, 42, 441–464.
    1. Sator, P. G. , Schmidt, J. B. , & Hönigsmann, H. (2003). Comparison of epidermal hydration and skin surface lipids in healthy individuals and in patients with atopic dermatitis. Journal of the American Academy of Dermatology, 48, 352–358.
    1. Scharschmidt, T. C. , & Fischbach, M. A. (2013). What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discovery Today: Disease Mechanisms, 10, e83–e89.
    1. Schloss, P. D. , Westcott, S. L. , Ryabin, T. , Hall, J. R. , Hartmann, M. , Hollister, E. B. , … Sahl, J. W. (2009). Introducing mothur: Open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.
    1. Schommer, N. N. , & Gallo, R. L. (2013). Structure and function of the human skin microbiome. Trends in Microbiology, 21, 660–668.
    1. Segata, N. , Izard, J. , Waldron, L. , Gevers, D. , Miropolsky, L. , Garrett, W. S. , & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60
    1. Shannon, C. E. , & Weaver, W. (1963). The Mathematical Theory of Communication. Urbana: University of Illinois Press.
    1. Si, J. , Lee, S. , Park, J. M. , Sung, J. , & Ko, G. (2015). Genetic associations and shared environmental effects on the skin microbiome of Korean twins. BMC genomics, 16, 992
    1. The Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207.
    1. Van Kuilenburg, J. , Masen, M. A. , Groenendijk, M. N. W. , Bana, V. V. , & Van Der Heide, E. (2012). An experimental study on the relation between surface texture and tactile friction. Tribology International, 48, 15–21.
    1. Wang, Q. , Garrity, G. M. , Tiedje, J. M. , & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267.
    1. Wertz, P. W. (1996). The nature of the epidermal barrier: Biochemical aspects. Advanced Drug Delivery Reviews, 18, 283–294.
    1. Wickham, H . (2009). ggplot2: Elegant graphics for data analysis. Berlin, Germany: Springer Science & Business Media;
    1. Ying, S. , Zeng, D. N. , Chi, L. , Tan, Y. , Galzote, C. , Cardona, C. , … Quan, Z. X. (2015). The influence of age and gender on skin‐associated microbial communities in urban and rural human populations. PLoS ONE, 10, e0141842
    1. Youn, S. W. , Kim, S. J. , Hwang, I. A. , & Park, K. C. (2002). Evaluation of facial skin type by sebum secretion: Discrepancies between subjective descriptions and sebum secretion. Skin Research and Technology, 8, 168–172.
    1. Zeeuwen, P. L. , Boekhorst, J. , van den Bogaard, E. H. , de Koning, H. D. , van de Kerkhof, P. M. , Saulnier, D. M. , … Timmerman, H. M. (2012). Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biology, 13, R101
    1. Zeeuwen, P. L. , Kleerebezem, M. , Timmerman, H. M. , & Schalkwijk, J. (2013). Microbiome and skin diseases. Current Opinion in Allergy and Clinical Immunology, 13, 514–520.

Source: PubMed

Подписаться