Mortality following emergency laparotomy: a Swedish cohort study

Terje Jansson Timan, Gustav Hagberg, Ninni Sernert, Ove Karlsson, Mattias Prytz, Terje Jansson Timan, Gustav Hagberg, Ninni Sernert, Ove Karlsson, Mattias Prytz

Abstract

Background: Emergency laparotomy (EL) is a central, high-risk procedure in emergency surgery. Patients in need of an EL present an acute pathology in the abdomen that must be operated on in order to save their lives. Usually, the underlying condition produces an affected physiology. The perioperative management of this critically ill patient group in need of high-risk surgery and anaesthesia is challenging and related to high mortality worldwide. However, outcomes in Sweden have yet to be studied. This retrospective cohort study explores the perioperative management and outcome after 710 ELs by investigating mortality, overall length of stay (LOS) in hospital, need for care at the intensive care unit (ICU), surgical complications and a general review of perioperative management.

Methods: Medical records after laparotomy was retrospectively analysed for a period of 38 months (2014-2017), the emergency cases were included. Children (< 18 years), aortic surgery, second look and other expected reoperations were excluded. Demographic, management and outcome data were collected after an extensive analysis of the cohort.

Results: A total of 710 consecutive operations, representing 663 patients, were included in the cohort (mean age 65.6 years). Mortality (30 days/1 year) after all operations was 14.2% and 26.6% respectively. The mean LOS in hospital was 12 days, while LOS in the ICU was five days. Of all operations, 23.8% patients were admitted at any time to the ICU postoperatively and the 30-day mortality seen among ICU patients was 37.9%. Mortality was strongly correlated to existing comorbidity, high ASA classification, ICU care and faecal peritonitis. The mean/median time from notification to operate until the first incision was 3:46/3:02 h and 87% of patients had their first incision within 6 h of notification.

Conclusions: In this present Swedish study, high mortality and morbidity were observed after emergency laparotomy, which is in agreement with other recent studies.

Trial registration: The study has been registered with ClinicalTrials.gov (NCT03549624, registered 8 June 2018).

Keywords: Acute abdomen; Acute surgery; Emergency laparotomy; ICU; Intensive care; Mortality; Outcome; Perioperative management.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Study structure. This figure show the exclusion/inclusion process. The total number of surgical procedures performed during the study period of 38 months (2014–2017). *The laparotomies that had a different procedure-code initially

References

    1. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet. 2015;385:S11. doi: 10.1016/S0140-6736(15)60806-6.
    1. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, et al. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care (London, England) 2006;10(3):R81. doi: 10.1186/cc4928.
    1. Ho VP, Schiltz NK, Reimer AP, Madigan EA, Koroukian SM. High-risk comorbidity combinations in older patients undergoing emergency general surgery. J Am Geriatr Soc. 2019;67(3):503–510. doi: 10.1111/jgs.15682.
    1. Scott JW, Olufajo OA, Brat GA, Rose JA, Zogg CK, Haider AH, et al. Use of national burden to define operative emergency general surgery. JAMA Surg. 2016;151(6):e160480. doi: 10.1001/jamasurg.2016.0480.
    1. Bampoe S, Odor PM, Ramani Moonesinghe S, Dickinson M. A systematic review and overview of health economic evaluations of emergency laparotomy. Perioper Med (Lond) 2017;6:21. doi: 10.1186/s13741-017-0078-z.
    1. Al-Temimi MH, Griffee M, Enniss TM, Preston R, Vargo D, Overton S, et al. When is death inevitable after emergency laparotomy? Analysis of the American College of Surgeons National Surgical Quality Improvement Program database. J Am Coll Surg. 2012;215(4):503–511. doi: 10.1016/j.jamcollsurg.2012.06.004.
    1. Aitken RM, Partridge JSL, Oliver CM, Murray D, Hare S, Lockwood S, et al. Older patients undergoing emergency laparotomy: observations from the National Emergency Laparotomy Audit (NELA) years 1–4. Age Ageing. 2020;49(4):656–663. doi: 10.1093/ageing/afaa075.
    1. Aggarwal G, Peden CJ, Mohammed MA, Pullyblank A, Williams B, Stephens T, et al. Evaluation of the collaborative use of an evidence-based care bundle in emergency laparotomy. JAMA Surg. 2019;154(5):e190145. doi: 10.1001/jamasurg.2019.0145.
    1. Barazanchi AWH, Xia W, MacFater W, Bhat S, MacFater H, Taneja A, et al. Risk factors for mortality after emergency laparotomy: scoping systematic review. ANZ J Surg. 2020 doi: 10.1111/ans.16082.
    1. Vester-Andersen M, Lundstrom LH, Moller MH, Waldau T, Rosenberg J, Moller AM. Mortality and postoperative care pathways after emergency gastrointestinal surgery in 2904 patients: a population-based cohort study. Br J Anaesth. 2014;112(5):860–870. doi: 10.1093/bja/aet487.
    1. Peden CJ, Stephens T, Martin G, Kahan BC, Thomson A, Rivett K, et al. Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial. Lancet (London, England) 2019;393(10187):2213–2221. doi: 10.1016/S0140-6736(18)32521-2.
    1. Peden C, Scott MJ. Anesthesia for emergency abdominal surgery. Anesthesiol Clin. 2015;33(1):209–221. doi: 10.1016/j.anclin.2014.11.012.
    1. Tengberg LT, Bay-Nielsen M, Bisgaard T, Cihoric M, Lauritsen ML, Foss NB. Multidisciplinary perioperative protocol in patients undergoing acute high-risk abdominal surgery. Br J Surg. 2017;104(4):463–471. doi: 10.1002/bjs.10427.
    1. Huddart S, Peden CJ, Swart M, McCormick B, Dickinson M, Mohammed MA, et al. Use of a pathway quality improvement care bundle to reduce mortality after emergency laparotomy. Br J Surg. 2015;102(1):57–66. doi: 10.1002/bjs.9658.
    1. Sankar A, Johnson SR, Beattie WS, Tait G, Wijeysundera DN. Reliability of the American Society of Anesthesiologists physical status scale in clinical practice. Br J Anaesth. 2014;113(3):424–432. doi: 10.1093/bja/aeu100.
    1. Akhtar M, Donnachie DJ, Siddiqui Z, Ali N, Uppara M. Hierarchical regression of ASA prediction model in predicting mortality prior to performing emergency laparotomy a systematic review. Ann Med Surg (Lond) 2020;60:743–749. doi: 10.1016/j.amsu.2020.11.089.
    1. Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, et al. The Clavien–Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250(2):187–196. doi: 10.1097/SLA.0b013e3181b13ca2.
    1. Peacock O, Bassett MG, Kuryba A, Walker K, Davies E, Anderson I, et al. Thirty-day mortality in patients undergoing laparotomy for small bowel obstruction. Br J Surg. 2018;105(8):1006–1013. doi: 10.1002/bjs.10812.
    1. Saunders DI, Murray D, Pichel AC, Varley S, Peden CJ. Variations in mortality after emergency laparotomy: the first report of the UK Emergency Laparotomy Network. Br J Anaesth. 2012;109(3):368–375. doi: 10.1093/bja/aes165.
    1. Tolstrup MB, Watt SK, Gogenur I. Morbidity and mortality rates after emergency abdominal surgery: an analysis of 4346 patients scheduled for emergency laparotomy or laparoscopy. Langenbecks Arch Surg. 2017;402(4):615–623. doi: 10.1007/s00423-016-1493-1.
    1. Timan TJ, Sernert N, Karlsson O, Prytz M. SMASH standardised perioperative management of patients operated with acute abdominal surgery in a high-risk setting. BMC Res Notes. 2020 doi: 10.1186/s13104-020-05030-4.

Source: PubMed

Подписаться