Reliability and Validity of the Japanese Version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ)

Hideki Nakano, Takayuki Kodama, Kazumasa Ukai, Satoru Kawahara, Shiori Horikawa, Shin Murata, Hideki Nakano, Takayuki Kodama, Kazumasa Ukai, Satoru Kawahara, Shiori Horikawa, Shin Murata

Abstract

In this study, we aimed to (1) translate the English version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses motor imagery ability, into Japanese, and (2) investigate the reliability and validity of the Japanese KVIQ. We enrolled 28 healthy adults in this study. We used Cronbach&rsquo;s alpha coefficients to assess reliability reflected by the internal consistency. Additionally, we assessed validity reflected by the criterion-related validity between the Japanese KVIQ and the Japanese version of the Movement Imagery Questionnaire-Revised (MIQ-R) with Spearman&rsquo;s rank correlation coefficients. The Cronbach&rsquo;s alpha coefficients for the KVIQ-20 were 0.88 (Visual) and 0.91 (Kinesthetic), which indicates high reliability. There was a significant positive correlation between the Japanese KVIQ-20 (Total) and the Japanese MIQ-R (Total) (r = 0.86, p < 0.01). Our results suggest that the Japanese KVIQ is an assessment that is a reliable and valid index of motor imagery ability.

Keywords: Japanese; kinesthetic and visual imagery questionnaire; motor imagery.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. Behav. Brain Sci. 1994;17:187–202. doi: 10.1017/S0140525X00034026.
    1. Pascual-Leone A., Nguyet D., Cohen L.G., Brasil-Neto J.P., Cammarota A., Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 1995;74:1037–1045. doi: 10.1152/jn.1995.74.3.1037.
    1. Yue G., Cole K.J. Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. J. Neurophysiol. 1992;67:1114–1123. doi: 10.1152/jn.1992.67.5.1114.
    1. Oostra K.M., Oomen A., Vanderstraeten G., Vingerhoets G. Influence of motor imagery training on gait rehabilitation in sub-acute: A randomized controlled trial. J. Rehabil. Med. 2015;47:204–209. doi: 10.2340/16501977-1908.
    1. Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Hino T., Miyai I. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: A pilot study. Stroke. 2013;44:1091–1098. doi: 10.1161/STROKEAHA.111.674507.
    1. Schuster C., Butler J., Andrews B., Kischka U., Ettlin T. Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial. Trials. 2012;13:11. doi: 10.1186/1745-6215-13-11.
    1. Verma R., Arya K.N., Garg R.K., Singh T. Task-oriented circuit class training program with motor imagery for gait rehabilitation in poststroke patients: A randomized controlled trial. Top. Stroke Rehabil. 2011;18:620–632. doi: 10.1310/tsr18s01-620.
    1. Ietswaart M., Johnston M., Dijkerman H.C., Joice S., Scott C.L., MacWalter R.S., Hamilton S.J. Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy. Brain. 2011;134:1373–1386. doi: 10.1093/brain/awr077.
    1. Dickstein R., Deutsch J.E., Yoeli Y., Kafri M., Falash F., Dunsky A., Eshet A., Alexander N. Effects of integrated motor imagery practice on gait of individuals with chronic stroke: A half-crossover randomized study. Arch. Phys. Med. Rehabil. 2013;94:2119–2125. doi: 10.1016/j.apmr.2013.06.031.
    1. Sun L., Yin D., Zhu Y., Fan M., Zang L., Wu Y., Jia J., Bai Y., Zhu B., Hu Y. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: A longitudinal fMRI study. Neuroradiology. 2013;55:913–925. doi: 10.1007/s00234-013-1188-z.
    1. Cho H.Y., Kim J.S., Lee G.C. Effects of motor imagery training on balance and gait abilities in post-stroke patients: A randomized controlled trial. Clin. Rehabil. 2013;27:675–680. doi: 10.1177/0269215512464702.
    1. Bovend'Eerdt T.J., Dawes H., Sackley C., Izadi H., Wade D.T. An integrated motor imagery program to improve functional task performance in neurorehabilitation: A single-blind randomized controlled trial. Arch. Phys. Med. Rehabil. 2010;91:939–946. doi: 10.1016/j.apmr.2010.03.008.
    1. Hoyek N., Di Rienzo F., Collet C., Hoyek F., Guillot A. The therapeutic role of motor imagery on the functional rehabilitation of a stage II shoulder impingement syndrome. Disabil. Rehabil. 2014;36:1113–1119. doi: 10.3109/09638288.2013.833309.
    1. Lebon F., Guillot A., Collet C. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl. Psychophysiol. Biofeedback. 2012;37:45–51. doi: 10.1007/s10484-011-9175-9.
    1. Stenekes M.W., Geertzen J.H., Nicolai J.P., De Jong B.M., Mulder T. Effects of motor imagery on hand function during immobilization after flexor tendon repair. Arch. Phys. Med. Rehabil. 2009;90:553–559. doi: 10.1016/j.apmr.2008.10.029.
    1. Guillot A., Lebon F., Vernay M., Girbon J.P., Doyon J., Collet C. Effect of motor imagery in the rehabilitation of burn patients. J. Burn Care Res. 2009;30:686–693. doi: 10.1097/BCR.0b013e3181ac0003.
    1. Moseley G.L. Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology. 2006;67:2129–2134. doi: 10.1212/01.wnl.0000249112.56935.32.
    1. Moseley G.L. Graded motor imagery is effective for long-standing complex regional pain syndrome: A randomised controlled trial. Pain. 2004;108:192–198. doi: 10.1016/j.pain.2004.01.006.
    1. Wilson P.H., Thomas P.R., Maruff P. Motor imagery training ameliorates motor clumsiness in children. J. Child Neurol. 2002;17:491–498. doi: 10.1177/088307380201700704.
    1. Hétu S., Grégoire M., Saimpont A., Coll M.P., Eugène F., Michon P.E., Jackson P.L. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2013;37:930–949. doi: 10.1016/j.neubiorev.2013.03.017.
    1. Guillot A., Collet C., Nguyen V.A., Malouin F., Richards C., Doyon J. Brain activity during visual versus kinesthetic imagery: An fMRI study. Hum. Brain Mapp. 2009;30:2157–2172. doi: 10.1002/hbm.20658.
    1. Kilintari M., Narayana S., Babajani-Feremi A., Rezaie R., Papanicolaou A.C. Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res. 2016;1646:249–261. doi: 10.1016/j.brainres.2016.06.009.
    1. Sakurada T., Hirai M., Watanabe E. Optimization of a motor learning attention-directing strategy based on an individual's motor imagery ability. Exp. Brain Res. 2016;234:301–311. doi: 10.1007/s00221-015-4464-9.
    1. Sakurada T., Nakajima T., Morita M., Hirai M., Watanabe E. Improved motor performance in patients with acute stroke using the optimal individual attentional strategy. Sci. Rep. 2017;7:40592. doi: 10.1038/srep40592.
    1. Malouin F., Richards C.L., Jackson P.L., Lafleur M.F., Durand A., Doyon J. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. J. Neurol. Phys. Ther. 2007;31:20–29. doi: 10.1097/01.NPT.0000260567.24122.64.
    1. Braun S., Kleynen M., van Heel T., Kruithof N., Wade D., Beurskens A. The effects of mental practice in neurological rehabilitation; A systematic review and meta-analysis. Front. Hum. Neurosci. 2013;7:390. doi: 10.3389/fnhum.2013.00390.
    1. Wondrusch C., Schuster-Amft C. A standardized motor imagery introduction program (MIIP) for neuro-rehabilitation: Development and evaluation. Front Hum. Neurosci. 2013;7:477. doi: 10.3389/fnhum.2013.00477.
    1. Malouin F., Jackson P.L., Richards C.L. Towards the integration of mental practice in rehabilitation programs. A critical review. Front. Hum. Neurosci. 2013;7:576. doi: 10.3389/fnhum.2013.00576.
    1. Schuster C., Lussi A., Wirth B., Ettlin T. Two assessments to evaluate imagery ability: Translation, test-retest reliability and concurrent validity of the German KVIQ and Imaprax. BMC Med. Res. Methodol. 2012;12:127. doi: 10.1186/1471-2288-12-127.
    1. Hall C.R., Martin K.A. Measuring movement imagery abilities: A revision of the Movement Imagery Questionnaire. J. Ment. Imagery. 1997;21:143–154.
    1. Hall C.R., Pongrac J., Buckloz E. The measurement of imagery ability. Hum. Mov. Sci. 1985;4:107–118. doi: 10.1016/0167-9457(85)90006-5.
    1. Loison B., Moussaddaq A.S., Cormier J., Richard I., Ferrapie A.L., Ramond A., Dinomais M. Translation and validation of the French Movement Imagery Questionnaire—Revised Second Version (MIQ-RS) Ann. Phys. Rehabil. Med. 2013;56:157–173. doi: 10.1016/j.rehab.2013.01.001.
    1. Oldfield R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Tabrizi Y.M., Zangiabadi N., Mazhari S., Zolala F. The reliability and validity study of the Kinesthetic and Visual Imagery Questionnaire in individuals with multiple sclerosis. Braz. J. Phys. Ther. 2013;17:588–592. doi: 10.1590/S1413-35552012005000124.
    1. Malouin F., Richards C.L., Durand A., Doyon J. Clinical assessment of motor imagery after stroke. Neurorehabil. Neural Repair. 2008;22:330–340. doi: 10.1177/1545968307313499.
    1. Randhawa B., Harris S., Boyd L.A. The Kinesthetic and Visual Imagery Questionnaire is a reliable tool for individuals with Parkinson disease. J. Neurol. Phys. Ther. 2010;34:161–167. doi: 10.1097/NPT.0b013e3181e1aa71.
    1. Hasagawa N., Hoshino K. On relationship between skill and movement imagery with athletes. J. Health Sports Sci. Juntendo. 2002;6:166–173.
    1. Williams S.E., Cumming J., Ntoumanis N., Nordin-Bates S.M., Ramsey R., Hall C. Further validation and development of the movement imagery questionnaire. J. Sport Exerc. Psychol. 2012;34:621–646. doi: 10.1123/jsep.34.5.621.
    1. Battaglia C., D’Artibale E., Fiorilli G., Piazza M., Tsopani D., Giombini A., Calcagno G., di Cagno A. Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes. Hum. Mov. Sci. 2014;38:225–234. doi: 10.1016/j.humov.2014.10.001.
    1. Malouin F., Richards C.L., Durand A. Normal aging and motor imagery vividness: Implications for mental practice training in rehabilitation. Arch. Phys. Med. Rehabil. 2010;91:1122–1127. doi: 10.1016/j.apmr.2010.03.007.
    1. Saimpont A., Malouin F., Tousignant B., Jackson P.L. Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Res. 2015;1597:196–209. doi: 10.1016/j.brainres.2014.11.050.

Source: PubMed

Подписаться