Old and new antirheumatic drugs for the treatment of COVID-19

Maurizio Benucci, Arianna Damiani, Maria Infantino, Mariangela Manfredi, Luca Quartuccio, Maurizio Benucci, Arianna Damiani, Maria Infantino, Mariangela Manfredi, Luca Quartuccio

No abstract available

Keywords: B-DMARDs; Covid-19; DMARDs; Ts-DMARDs.

References

    1. . Accessed March 12, 2020.
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–539.
    1. Ji W., Wang W., Zhao X., et al. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92:433–440.
    1. Zhao Y., Zhao Z., Wang Y., et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv. 2020 doi: 10.1101/2020.01.26.919985.
    1. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Xu X.W., Wu X.X., Jiang X.G., et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606. doi: 10.1136/bmj.m606.
    1. Zhou F., Yu T., Fan G., et al. Clinical course and mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020 doi: 10.1016/S0140-6726(20)30566-3.
    1. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. ChinaXiv: 202003.00026v1.
    1. Rolain J.-M., Colson P., Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30:297–308.
    1. Vincent M.J., Bergeron E., Benjannet S., et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69.
    1. Wang M., Cao R., Zhang L., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271.
    1. Gao J., Tian Z., Yang X., et al. Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends. 2020;14:72–73.
    1. Lombardia SR. Linee guida sulla gestione terapeutica e di supporto per pazienti con infezione da coronavirus COVID-19. SIMIT, Edizione marzo 2020. , access march 2020.
    1. NHCoMAHA . 2020. Diagnosis and treatment protocol for novel coronavirus pneumonia (7th interim edition). China. [Available from: ]
    1. Gautret P., Lagier J.C., Parola P., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial. Int J Antimicrob Agents. 2020 doi: 10.1016/j.ijantimicag.2020.105949.
    1. Zhou D., Dai S.M., Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020 doi: 10.1093/jac/dkaa114.
    1. Diao B., Wang C., Tan Y., et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19) medRxiv. 2020 doi: 10.1101/2020.02.18.20024364.
    1. Xu X., Han M., Li T., et al. 2020. Effective treatment of severe COVID-19 patients with tocilizumab. ChinaXiv: 20200300026.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 doi: 10.1016/j.cell.2020.02.052.
    1. Wang P.-H. Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) expression by Coronavirus may facilitate 2019-nCoV Infection. bioRxiv. 2020 doi: 10.1101/2020.02.24.963348.
    1. Haga S., Yamamoto N., Nakai-Murakami C., et al. Modulation of TNF-α- converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci. 2008;105:7809–7814.
    1. Imai Y., Kuba K., Rao S., et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116.
    1. Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virolog Sinica. 2020 doi: 10.1007/s12250-020-00207-4.
    1. Deng X., Yu X., Pei J. 2020. Regulation of interferon production as a potential strategy for COVID-19 treatment.
    1. Li X., Geng M., Peng Y., et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020 doi: 10.1016/j.jpha.2020.03.001.
    1. Pu S.-Y., Xiao F., Schor S., et al. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral Res. 2018;155:67–75.
    1. Richardson P., Griffin I., Tucker C., et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395 e30-e1.
    1. Stebbing J., Phelan A., Griffin I., et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 doi: 10.1016/S1473-3099(20)30132-8.
    1. Sanchez G.A.M., Reinhardt A., Ramsey S., et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128:3041–3052.
    1. Lucchino B., Di Franco M., Conti F. COVID-19: An unexpected indication for anti-rheumatic therapies? Rheumatology. 2020 [in press]
    1. Favalli E.G., Ingegnoli F., De Lucia O., et al. COVID-19 infection and rheumatoid arthritis: faraway, so close! Autoimmunity Rev. 2020 doi: 10.1016/j.autrev.2020.102523.

Source: PubMed

Подписаться