Masitinib as an adjunct therapy for mild-to-moderate Alzheimer's disease: a randomised, placebo-controlled phase 2 trial

François Piette, Joël Belmin, Hélène Vincent, Nicolas Schmidt, Sylvie Pariel, Marc Verny, Caroline Marquis, Jean Mely, Laurence Hugonot-Diener, Jean-Pierre Kinet, Patrice Dubreuil, Alain Moussy, Olivier Hermine, François Piette, Joël Belmin, Hélène Vincent, Nicolas Schmidt, Sylvie Pariel, Marc Verny, Caroline Marquis, Jean Mely, Laurence Hugonot-Diener, Jean-Pierre Kinet, Patrice Dubreuil, Alain Moussy, Olivier Hermine

Abstract

Introduction: Neuroinflammation is thought to be important in Alzheimer's disease pathogenesis. Mast cells are a key component of the inflammatory network and participate in the regulation of the blood-brain barrier's permeability. Masitinib, a selective oral tyrosine kinase inhibitor, effectively inhibits the survival, migration and activity of mast cells. As the brain is rich in mast cells, the therapeutic potential of masitinib as an adjunct therapy to standard care was investigated.

Methods: A randomised, placebo-controlled, phase 2 study was performed in patients with mild-to-moderate Alzheimer's disease, receiving masitinib as an adjunct to cholinesterase inhibitor and/or memantine. Patients were randomly assigned to receive masitinib (n = 26) (starting dose of 3 or 6 mg/kg/day) or placebo (n = 8), administered twice daily for 24 weeks. The primary endpoint was change from baseline in the Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-Cog) to assess cognitive function and the related patient response rate.

Results: The rate of clinically relevant cognitive decline according to the ADAS-Cog response (increase >4 points) after 12 and 24 weeks was significantly lower with masitinib adjunctive treatment compared with placebo (6% vs. 50% for both time points; P = 0.040 and P = 0.046, respectively). Moreover, whilst the placebo treatment arm showed worsening mean ADAS-Cog, Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory, and Mini-Mental State Examination scores, the masitinib treatment arm reported improvements, with statistical significance between treatment arms at week 12 and/or week 24 (respectively, P = 0.016 and 0.030; P = 0.035 and 0.128; and P = 0.047 and 0.031). The mean treatment effect according to change in ADAS-Cog score relative to baseline at weeks 12 and 24 was 6.8 and 7.6, respectively. Adverse events occurred more frequently with masitinib treatment (65% vs. 38% of patients); however, the majority of events were of mild or moderate intensity and transitory. Severe adverse events occurred at a similar frequency in the masitinib and placebo arms (15% vs. 13% of patients, respectively). Masitinib-associated events included gastrointestinal disorders, oedema, and rash.

Conclusions: Masitinib administered as add-on therapy to standard care during 24 weeks was associated with slower cognitive decline in Alzheimer's disease, with an acceptable tolerance profile. Masitinib may therefore represent an innovative avenue of treatment in Alzheimer's disease. This trial provides evidence that may support a larger placebo-controlled investigation.

Trial registration: Clinicaltrials.gov NCT00976118.

Figures

Figure 1
Figure 1
Consort diagram. LOCF, last observation carried forward.
Figure 2
Figure 2
Summary of efficacy data at weeks 12 and 24. Mean change from baseline to week 24 in (a) Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-Cog), (b) Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory (ADCS-ADL) and (c) Mini-Mental State Examination (MMSE), according to observed cases dataset analysis on the intent-to-treat population. N, number of evaluable patients at each time point (masitinib-treated versus placebo, respectively).

References

    1. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366:2112–2117.
    1. Gaspar RC, Villarreal SA, Bowles N, Hepler RW, Joyce JG, Shughrue PJ. Oligomers of beta-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Exp Neurol. 2010;223:394–400. doi: 10.1016/j.expneurol.2009.09.001.
    1. Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA. 2000;283:1571–1577. doi: 10.1001/jama.283.12.1571.
    1. Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy. Alzheimers Res Ther. 2010;2:1. doi: 10.1186/alzrt24.
    1. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH. Systemic inflammation and disease progression in Alzheimer disease. Neurology. 2009;73:768–774. doi: 10.1212/WNL.0b013e3181b6bb95.
    1. Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol. 2005;37:289–305. doi: 10.1016/j.biocel.2004.07.009.
    1. Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R. Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci USA. 2008;105:18053–18057. doi: 10.1073/pnas.0809479105.
    1. Theoharides TC, Cochrane DE. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol. 2004;146:1–12. doi: 10.1016/j.jneuroim.2003.10.041.
    1. Silverman AJ, Sutherland AK, Wilhelm M, Silver R. Mast cells migrate from blood to brain. J Neurosci. 2000;20:401–408.
    1. Kinet JP. The essential role of mast cells in orchestrating inflammation. Immunol Rev. 2007;217:5–7. doi: 10.1111/j.1600-065X.2007.00528.x.
    1. Clifford PM, Zarrabi S, Siu G, Kinsler KJ, Kosciuk MC, Venkataraman V, D'Andrea MR, Dinsmore S, Nagele RG. Abeta peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons. Brain Res. 2007;1142:223–236.
    1. Hartz AM, Miller DS, Bauer B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. Mol Pharmacol. 2010;77:715–723. doi: 10.1124/mol.109.061754.
    1. Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology. 2007;68:1809–1814. doi: 10.1212/01.wnl.0000262031.18018.1a.
    1. Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke. 2003;34:806–812. doi: 10.1161/01.STR.0000058480.77236.B3.
    1. Dubreuil P, Letard S, Ciufolini M, Gros L, Humbert M, Casteran N, Borge L, Hajem B, Lermet A, Sippl W, Voisset E, Arock M, Auclair C, Leventhal PS, Mansfield CD, Moussy A, Hermine O. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009;4:e7258. doi: 10.1371/journal.pone.0007258.
    1. Tebib J, Mariette X, Bourgeois P, Flipo RM, Gaudin P, Le Loet X, Gineste P, Guy L, Mansfield CD, Moussy A, Dubreuil P, Hermine O, Sibilia J. Masitinib in the treatment of active rheumatoid arthritis: results of a multicentre, open-label, dose-ranging, phase 2a study. Arthritis Res Ther. 2009;11:R95. doi: 10.1186/ar2740.
    1. Humbert M, de Blay F, Garcia G, Prud'homme A, Leroyer C, Magnan A, Tunon-de-Lara JM, Pison C, Aubier M, Charpin D, Vachier I, Purohit A, Gineste P, Bader T, Moussy A, Hermine O, Chanez P. Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy. 2009;64:1194–1201. doi: 10.1111/j.1398-9995.2009.02122.x.
    1. Takayama N, Sato N, O'Brien SG, Ikeda Y, Okamoto S. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol. 2002;119:106–108. doi: 10.1046/j.1365-2141.2002.03881.x.
    1. Cummings JL. Treatment of Alzheimer's disease: current and future therapeutic approaches. Rev Neurol Dis. 2004;1:60–69.
    1. Niederhoffer N, Levy R, Sick E, Andre P, Coupin G, Lombard Y, Gies JP. Amyloid beta peptides trigger CD47-dependent mast cell secretory and phagocytic responses. Int J Immunopathol Pharmacol. 2009;22:473–483.
    1. Esposito P, Chandler N, Kandere K, Basu S, Jacobson S, Connolly R, Tutor D, Theoharides TC. Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther. 2002;303:1061–1066. doi: 10.1124/jpet.102.038497.
    1. Zhuang X, Silverman AJ, Silver R. Brain mast cell degranulation regulates blood-brain barrier. J Neurobiol. 1996;31:393–403. doi: 10.1002/(SICI)1097-4695(199612)31:4<393::AID-NEU1>;2-4.
    1. Zhang SC, Fedoroff S. Modulation of microglia by stem cell factor. J Neurosci Res. 1998;53:29–37. doi: 10.1002/(SICI)1097-4547(19980701)53:1<29::AID-JNR4>;2-L.
    1. Pena F, Ordaz B, Balleza-Tapia H, Bernal-Pedraza R, Marquez-Ramos A, Carmona-Aparicio L, Giordano M. Beta-amyloid protein (25-35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus. 2010;20:78–96.
    1. Lee G, Thangavel R, Sharma VM, Litersky JM, Bhaskar K, Fang SM, Do LH, Andreadis A, Van Hoesen G, Ksiezak-Reding H. Phosphorylation of tau by fyn: implications for Alzheimer's disease. J Neurosci. 2004;24:2304–2312. doi: 10.1523/JNEUROSCI.4162-03.2004.
    1. Williamson R, Scales T, Clark BR, Gibb G, Reynolds CH, Kellie S, Bird IN, Varndell IM, Sheppard PW, Everall I, Anderton BH. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-beta peptide exposure: involvement of Src family protein kinases. J Neurosci. 2002;22:10–20.
    1. Gianni D, Zambrano N, Bimonte M, Minopoli G, Mercken L, Talamo F, Scaloni A, Russo T. Platelet-derived growth factor induces the beta-gamma-secretase-mediated cleavage of Alzheimer's amyloid precursor protein through a Src-Rac-dependent pathway. J Biol Chem. 2003;278:9290–9297. doi: 10.1074/jbc.M211899200.
    1. Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV. Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359:1283–1290. doi: 10.1016/S0140-6736(02)08267-3.
    1. Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer's disease: multicentre randomised controlled trial. Galantamine International-1 Study Group. BMJ. 2000;321:1445–1449. doi: 10.1136/bmj.321.7274.1445.
    1. Paul C, Sans B, Suarez F, Casassus P, Barete S, Lanternier F, Grandpeix-Guyodo C, Dubreuil P, Palmerini F, Mansfield CD, Gineste P, Moussy A, Hermine O, Lortholary O. Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am J Hematol. 2010;85:921–925. doi: 10.1002/ajh.21894.
    1. Daigle J, Moussy A, Mansfield CD, Hermine O. Masitinib for the treatment of canine atopic dermatitis: a pilot study. Vet Res Commun. 2009;34:51–63.

Source: PubMed

Подписаться