Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-of-concept randomized trial

Alejandro Krolewiecki, Adrián Lifschitz, Matías Moragas, Marina Travacio, Ricardo Valentini, Daniel F Alonso, Rubén Solari, Marcelo A Tinelli, Rubén O Cimino, Luis Álvarez, Pedro E Fleitas, Laura Ceballos, Marcelo Golemba, Florencia Fernández, Diego Fernández de Oliveira, German Astudillo, Inés Baeck, Javier Farina, Georgina A Cardama, Andrea Mangano, Eduardo Spitzer, Silvia Gold, Carlos Lanusse, Alejandro Krolewiecki, Adrián Lifschitz, Matías Moragas, Marina Travacio, Ricardo Valentini, Daniel F Alonso, Rubén Solari, Marcelo A Tinelli, Rubén O Cimino, Luis Álvarez, Pedro E Fleitas, Laura Ceballos, Marcelo Golemba, Florencia Fernández, Diego Fernández de Oliveira, German Astudillo, Inés Baeck, Javier Farina, Georgina A Cardama, Andrea Mangano, Eduardo Spitzer, Silvia Gold, Carlos Lanusse

Abstract

Background: There are limited antiviral options for the treatment of patients with COVID-19. Ivermectin (IVM), a macrocyclic lactone with a wide anti-parasitary spectrum, has shown potent activity against SARS-CoV-2 in vitro. This study aimed at assessing the antiviral effect of IVM on viral load of respiratory secretions and its relationship with drug concentrations in plasma.

Methods: Proof-of-concept, pilot, randomized, controlled, outcome-assessor blinded trial to evaluate antiviral activity of high-dose IVM in 45 COVID-19 hospitalized patients randomized in a 2:1 ratio to standard of care plus oral IVM at 0·6 mg/kg/day for 5 days versus standard of care in 4 hospitals in Argentina. Eligible patients were adults with RT-PCR confirmed SARS-CoV-2 infection within 5 days of symptoms onset. The primary endpoint was the difference in viral load in respiratory secretions between baseline and day-5, by quantitative RT-PCR. Concentrations of IVM in plasma were measured. Study registered at ClinicalTrials.gov: NCT04381884.

Findings: 45 participants were recruited (30 to IVM and 15 controls) between May 18 and September 9, 2020. There was no difference in viral load reduction between groups but a significant difference was found in patients with higher median plasma IVM levels (72% IQR 59-77) versus untreated controls (42% IQR 31-73) (p = 0·004). Mean ivermectin plasma concentration levels correlated with viral decay rate (r: 0·47, p = 0·02). Adverse events were similar between groups. No differences in clinical evolution at day-7 and day-30 between groups were observed.

Interpretation: A concentration dependent antiviral activity of oral high-dose IVM was identified at a dosing regimen that was well tolerated. Large trials with clinical endpoints are necessary to determine the clinical utility of IVM in COVID-19.

Funding: This work was supported by grant IP-COVID-19-625, Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Argentina and Laboratorio ELEA/Phoenix, Argentina.

Conflict of interest statement

AK reports grants and lecture fees from Laboratorio Elea/Phoenix and a grant from Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Argentina. DFA reports personal fees from Laboratorio ELEA-Phoenix outside the submitted work; RV, RS and JF report personal fees from Elea Phoenix Laboratory during the conduct of the study. MT report personal fees from Elea/Phoenix. MAT and ES are employees of Laboratorios Elea/Phoenix. SG is a member of the Board of Directors of Laboratorio Elea/Phoenix. All other authors declare no competing interests.

© 2021 The Author(s).

Figures

Fig. 1
Fig. 1
Trial profile.
Fig. 2
Fig. 2
Viral load by quantitative RT-PCR on upper respiratory tract secretions since baseline in patients receiving IVM 0•6 mg/kg/day for 5 days versus untreated controls.
Fig. 3
Fig. 3
Viral load reduction between baseline and day-5 (median and IQR) in untreated controls and IVM treated patients discriminated by their median IVM plasma concentrations.
Fig. 4
Fig. 4
Viral load decay rates by quantitative RT-PCR on upper respiratory tract secretions in untreated controls and IVM treated patients according to median plasma concentrations of IVM. Data are expressed as median (IQR).

References

    1. National Institutes of Health . National Institutes of Health; 2020. COVID-19 treatment guidelines panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at. Accessed 06 Oct 2020.
    1. World Health Organization. Summary of global update on implementation of preventive chemotherapy against neglected tropical diseases in 2019. Wkly Epiemiol Rec. 2020;39(95):469–475.
    1. Jans DA, Wagstaff K.M. Ivermectin as a broad-spectrum host-directed antiviral: the real deal? Cells. 2020;9(9):2100. doi: 10.3390/cells9092100.
    1. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res. 2020;178 doi: 10.1016/j.antiviral.2020.104787.
    1. Kern C., Schöning V., Chaccour C., Hammann F. Modeling of SARS-CoV-2 treatment effects for informed drug repurposing. Front Pharmacol. 2021;12 doi: 10.48350/151549.
    1. López-Medina E., López P., Hurtado I.C., Davalos D., Ramirez O., Martinez E. Effect of Ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial. JAMA. 2021 doi: 10.1001/jama.2021.3071.
    1. Chaccour C., Hammann F., Rabinovich N.R. Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar J. 2017;16(1):161. doi: 10.1186/s12936-017-1801-4.
    1. Navarro M., Camprubí D., Requena-Méndez A., Buonfrate D., Giorli G., Kamgno J. Safety of high-dose ivermectin: a systematic review and meta-analysis. J Antimicrob Chemother. 2020;75(4):827–834. doi: 10.1093/jac/dkz524.
    1. Smit M.R., Ochomo E.O., Aljayyoussi G., Kwambai T.K., Abong'o B.O., Chen T. Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2018;18(6):615–626. doi: 10.1016/S1473-3099(18)30163-4.
    1. Guzzo C.A., Furtek C.I., Porras A.G. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J Clin Pharmacol. 2002;42(10):1122–1133. doi: 10.1177/009127002401382731.
    1. González Canga A., Prieto A.M.S., Diez Liébana M.J., Martinez N., Vega M., Vieitez G. The pharmacokinetics and interactions of ivermectin in humans - a mini review. AAPS J. 2008;10:42–46. doi: 10.1208/s12248-007-9000-9.
    1. Matamoros G., Sánchez A., Gabrie J.A., Juárez M., Ceballos L., Escalada . Efficacy and safety of albendazole and high-dose ivermectin co-administration in school-aged children infected with Trichuris trichiura in Honduras: A Randomized Controlled Trial. Clin Infect Dis. 2021:ciab365. doi: 10.1093/cid/ciab365.
    1. Han M.S., Byun J.H., Rim J.H. RT-PCR for SARS-CoV-2:quantitative versus qualitative. Lancet Infect Dis. 2021;21(2):165. doi: 10.1016/S1473-3099(20)30424-2.
    1. Burd E.M. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev. 2010;23(3):550–576. doi: 10.1128/CMR.00074-09.
    1. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622. doi: 10.1373/clinchem.2008.112797.
    1. Lifschitz A., Virkel G., Sallovitz J., Sutra J.F., Galtier P., Alvinerie M. Comparative distribution of ivermectin and doramectin to parasite location tissues in cattle. Vet Parasitol. 2000;87(4):327–338. doi: 10.1016/s0304-4017(99)00175-2.
    1. Gibaldi M., Perrier D. 2nd Ed. Informa Healthcare; New York: 1982. Pharmacokinetics. U, editor.
    1. Birkett M.A., Day S.J. Internal pilot studies for estimating sample size. Stat Med. 1994;13(23–24):2455–2463. doi: 10.1002/sim.4780132309.
    1. Cocks K., Torgerson D.J. Sample size calculations for pilot randomized trials: a confidence interval approach. J Clin Epidemiol. 2013;66(2):197–201.
    1. Cohen J. 2nd Ed. Hillsdale NLE, Lawrence Erlbaum Associates; 1988. Statistical power analysis for the behavioral sciences. Publishers.
    1. Yousaf X.Z., Al-shokri S.D., Al-soub H., Mohamed M.F.H., Rj A., Jt H. COVID-19-associated SIADH : a clue in the times of pandemic! Am J Physiol Endocrinol Metab. 2020;318(6):E882–E885. doi: 10.1152/ajpendo.00178.2020.
    1. Chaccour C., Hammann F., Ramon-Garcia S., Rabinovich N. Ivermectin and COVID-19 : keeping rigor in times of urgency. Am J Trop Med Hyg. 2020;102(6):1156–1157. doi: 10.4269/ajtmh.20-0271.
    1. Errecalde J., Lifschitz A., Vecchioli G. Safety and pharmacokinetic assessments of a novel ivermectin nasal spray formulation in a pig model. J Pharm Sci. 2021 doi: 10.1016/j.xphs.2021.01.017. Epub ahead of print.
    1. Jermain B., Hana P.O., Cao Y., Lifschitz A., Lanusse C., Rao G.G. Development of a minimal physiologically-based pharmacokinetic model to simulate lung exposure in humans following oral administration of ivermectin for COVID-19 drug repurposing. J Pharm Sci. 2020;109(12):3574–3578. doi: 10.1016/j.xphs.2020.08.024.
    1. Wang Y., Zhang D., Du G., Du R., Zhao J., Jin Y. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569–1578. doi: 10.1016/S0140-6736(20)31022-9.
    1. Chaccour C., Casellas A., Blanco-Di Matteo A., Pineda I., Fernandez-Montero A., Castillo P. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: a pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine. 2021;32 doi: 10.1016/j.eclinm.2020.100720.
    1. Muñoz J., Ballester M.R., Antonijoan R.M., Gich I., Rodríguez M., Colli E. Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers. PLoS Negl Trop Dis. 2018;12(1) doi: 10.1371/journal.pntd.0006020.
    1. Lespine A., Martin S., Dupuy J., Roulet A., Alvinerie M. Interaction of macrocyclic lactones with P-glycoprotein : structure–affinity relationship. Eur J Pharm Sci. 2006;0:84–94. doi: 10.1016/j.ejps.2006.10.004.
    1. Ballent M., Lifschitz A., Virkel G., Sallovitz J., Lanusse C. Involvement of P-glycoprotein on ivermectin kinetic behaviour in sheep : itraconazole-mediated changes on gastrointestinal disposition. J Vet Pharmacol Ther. 2007:242–248. doi: 10.1111/j.1365-2885.2007.00848.x.
    1. Vegvari C., Hadjichrysanthou C., Cauët E., Lawrence E., Cori A., De Wolf F. How can viral dynamics models inform endpoint measures in clinical trials of therapies for acute viral infections? PLoS ONE. 2016;11(7) doi: 10.1371/journal.pone.0158237.
    1. Vegvari C., Cauët E., Hadjichrysanthou C., Lawrence E., Weverling G., Wolf F. Using clinical trial simulators to analyse the sources of variance in clinical trials of novel therapies for acute viral infections. PLoS ONE. 2016;11(6) doi: 10.1371/journal.pone.0156622.
    1. Arabi Y., Assiri A.Y., Assiri A.M., Balkhy H., Bshabshe A., Jeraisy M. Interferon beta-1b and lopinavir–ritonavir for middle east respiratory syndrome. N Engl J Med. 2020;383(17):1645–1656. doi: 10.1056/NEJMoa2015294.
    1. Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–469. doi: 10.1038/s41586-020-2196-x.
    1. Draganov D., Gopalakrishna-pillai S., Chen Y., Zuckerman N., Moeller S., Wang C. Modulation of P2X4 /P2X7 / Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222. doi: 10.1038/srep16222.
    1. Alonso D.F., Farina H.G. Repurposing of host-based therapeutic agents for the treatment of coronavirus disease 2019 (COVID-19): a link between antiviral and anticancer mechanisms? Int J Antimicrob Agents. 2020;56(3) doi: 10.1016/j.ijantimicag.2020.106125.

Source: PubMed

Подписаться