A Randomised, Controlled Trial: Effect of a Multi-Strain Fermented Milk on the Gut Microbiota Recovery after Helicobacter pylori Therapy

Eric Guillemard, Marion Poirel, Florent Schäfer, Laurent Quinquis, Caroline Rossoni, Christian Keicher, Frank Wagner, Hania Szajewska, Frédéric Barbut, Muriel Derrien, Peter Malfertheiner, Eric Guillemard, Marion Poirel, Florent Schäfer, Laurent Quinquis, Caroline Rossoni, Christian Keicher, Frank Wagner, Hania Szajewska, Frédéric Barbut, Muriel Derrien, Peter Malfertheiner

Abstract

Helicobacter pylori (Hp) eradication therapy alters gut microbiota, provoking gastrointestinal (GI) symptoms that could be improved by probiotics. The study aim was to assess the effect in Hp patients of a Test fermented milk containing yogurt and Lacticaseibacillus (L. paracasei CNCM I-1518 and I-3689, L. rhamnosus CNCM I-3690) strains on antibiotic associated diarrhea (AAD) (primary aim), GI-symptoms, gut microbiota, and metabolites. A randomised, double-blind, controlled trial was performed on 136 adults under 14-day Hp treatment, receiving the Test or Control product for 28 days. AAD and GI-symptoms were reported and feces analysed for relative and quantitative gut microbiome composition, short chain fatty acids (SCFA), and calprotectin concentrations, and viability of ingested strains. No effect of Test product was observed on AAD or GI-symptoms. Hp treatment induced a significant alteration in bacterial and fungal composition, a decrease of bacterial count and alpha-diversity, an increase of Candida and calprotectin, and a decrease of SCFA concentrations. Following Hp treatment, in the Test as compared to Control group, intra-subject beta-diversity distance from baseline was lower (padj = 0.02), some Enterobacteriaceae, including Escherichia-Shigella (padj = 0.0082) and Klebsiella (padj = 0.013), were less abundant, and concentrations of major SCFA (p = 0.035) and valerate (p = 0.045) were higher. Viable Lacticaseibacillus strains were detected during product consumption in feces. Results suggest that, in patients under Hp treatment, the consumption of a multi-strain fermented milk can induce a modest but significant faster recovery of the microbiota composition (beta-diversity) and of SCFA production and limit the increase of potentially pathogenic bacteria.

Keywords: Helicobacter pylori; antibiotic associated diarrhea; antibiotics; gut microbiota; recovery; short chain fatty acids.

Conflict of interest statement

E.G., F.S., L.Q., C.R., M.D. and M.P. are Danone Nutricia Research employees. F.B. received grants from Astellas, Anios, MSD, Biomérieux, Quidel, Cubist, Biosynex, and GenePoc, personal fees from Astellas, Pfizer, MSD, and Danone, and non-financial support from Astellas, Pfizer, Anios, and MSD. PM provides consultancies to AlfaSigma, Bayer Vital, Danone, Luvos, Mayoly Spindler, Menarini, and Novartis and received speaker’s fee from Alfa Sigma, Bayer, Malesci, Mayoly Spindler, and Nordmark. H.S. has participated as a clinical investigator, and/or advisory board member, and/or consultant, and/or speaker for Arla, BioGaia, Biocodex, Danone, Dicofarm, Nestlé, and Nestlé Nutrition Institute. C.K. and F.W. had no conflict of interest. M.D. is inventor of patent applications (WO2015159125A1, WO2015159124A1) dealing with the use of L. paracasei CNCM I-3689 and L. rhamnosus CNCM I-3690 in the context of antibiotic dysbiosis.

Figures

Figure 1
Figure 1
(A) Study Design Overview. (B) Subject flowchart.
Figure 2
Figure 2
Global gut microbiota response to Hp treatment and product intervention. (A) Total bacterial count/g fecal samples assessed by flow cytometry, with a log10 transformation. (B) Alpha-diversity assessed by Shannon index (C) Alpha-diversity assessed by Simpson’s Reciprocal. (D) Principal Coordinate Analysis (PCoA) based on Bray–Curtis dissimilarity. Samples were collected before (V2) and after Hp treatment (V4), 14 days (V6) and 28 days (V7) following cessation of Hp treatment. * p < 0.05 and *** p < 0.001 according to linear mixed model. (EG) Intra-subject distance to baseline of each subject in Test and Control groups across the study (E) Bray–Curtis dissimilarity (F) Weighted UniFrac distance (G) Unweighted UniFrac distance. * p < 0.05 and *** p < 0.001 according to Mann–Whitney test.
Figure 3
Figure 3
Genus-level differential analysis based on Quantitative Microbiome Profiling (A) Heatmap of differentially abundant genera between each visit and baseline (V2) in the Control group. Red indicates higher fold-change and blue lower fold-change with regards to baseline (B) Heatmap of differentially abundant genera between Test and Control groups at each visit. Red indicates a higher fold-change and blue a lower fold-change in Test group (C) Heatmap of differentially abundant genera between follow-up (V7) and baseline (V2) which behave differently in the two groups. Red indicates higher fold-change and blue lower fold-change with regards to baseline (V2). For all heatmaps, only taxonomically assigned genera were selected based on QMP normalized counts >10.000.000, (FDR adj. * p < 0.1, DESeq2-based Wald test). Non-significant fold changes were set to zero for heatmap display and significant fold changes are highlighted by a star. (D) Quantitative log2 abundance of Escherichia/Shigella and Klebsiella in response to Hp treatment along the study, as mean ±95% CI.
Figure 4
Figure 4
Global gut mycobiota response to Hp treatment and product intervention. (A) Alpha-diversity assessed by Shannon index (B) Shannon index ratio ITS/16S based (C) Abundance of Candida. * p < 0.05 and ** p < 0.01 according to Mann–Whitney test.
Figure 5
Figure 5
Quantification of fecal major/minor SCFA and Calprotectin. Concentration (A,C,E) and change from baseline (B,D,F) of major SCFA (acetate, propionate, butyrate) (A,B), minor SCFA (valerate, caproate, isobutyrate, and isovalerate) (C,D) and Calprotectin (E,F). p-values are provided according to Student test: * p < 0.05 for comparison between groups of the change of major SCFA concentration from V4 to V6; a p < 0.05, b p < 0.01; c p < 0.001; and d p < 0.0001, for comparison within group of the change from V2 at each visit. SCFA concentrations are expressed in µmol/g of dry feces.

References

    1. Mekonnen S.A., Merenstein D., Fraser C.M., Marco M.L. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr. Opin. Biotechnol. 2020;61:226–234. doi: 10.1016/j.copbio.2020.01.005.
    1. Macke L., Schulz C., Koletzko L., Malfertheiner P. Systematic review: The effects of proton pump inhibitors on the microbiome of the digestive tract-evidence from next-generation sequencing studies. Aliment. Pharmacol. Ther. 2020;51:505–526. doi: 10.1111/apt.15604.
    1. Malfertheiner P., Megraud F., O’Morain C.A., Gisbert J.P., Kuipers E.J., Axon A.T., Bazzoli F., Gasbarrini A., Atherton J., Graham D.Y., et al. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut. 2017;66:6–30. doi: 10.1136/gutjnl-2016-312288.
    1. Sugano K., Tack J., Kuipers E.J., Graham D.Y., El-Omar E.M., Miura S., Haruma K., Asaka M., Uemura N., Malfertheiner P. Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 2015;64:1353–1367. doi: 10.1136/gutjnl-2015-309252.
    1. Malfertheiner P., Link A., Selgrad M. Helicobacter pylori: Perspectives and time trends. Nat. Rev. Gastroenterol. Hepatol. 2014;11:628–638. doi: 10.1038/nrgastro.2014.99.
    1. Fallone C.A., Moss S.F., Malfertheiner P. Reconciliation of recent Helicobacter pylori treatment guidelines in a time of increasing resistance to antibiotics. Gastroenterology. 2019;157:44–53. doi: 10.1053/j.gastro.2019.04.011.
    1. Ye Q., Shao X., Shen R., Chen D., Shen J. Changes in the human gut microbiota composition caused by Helicobacter pylori eradication therapy: A systematic review and meta-analysis. Helicobacter. 2020;25:e12713. doi: 10.1111/hel.12713.
    1. Wang Y.H., Huang Y. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum supplementation to standard triple therapy on Helicobacter pylori eradication and dynamic changes in intestinal flora. World J. Microbiol. Biotechnol. 2014;30:847–853. doi: 10.1007/s11274-013-1490-2.
    1. Wu L., Wang Z., Sun G., Peng L., Lu Z., Yan B., Huang K., Yang Y. Effects of anti-H. pylori triple therapy and a probiotic complex on intestinal microbiota in duodenal ulcer. Sci. Rep. 2019;9:12874. doi: 10.1038/s41598-019-49415-3.
    1. Vandeputte D., Kathagen G., D’hoe K., Vieira-Silva S., Valles-Colomer M., Sabino J., Wang J., Tito R.Y., De Commer L., Darzi Y., et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017;551:507–511. doi: 10.1038/nature24460.
    1. Wullt M., Johansson Hagslätt M.-L., Odenholt I., Berggren A. Lactobacillus plantarum 299v enhances the concentrations of fecal short-chain fatty acids in patients with recurrent clostridium difficile-associated diarrhea. Dig. Dis. Sci. 2007;52:2082–2086. doi: 10.1007/s10620-006-9123-3.
    1. Koning C.J., Jonkers D.M., Stobberingh E.E., Mulder L., Rombouts F.M., Stockbrügger R.W. The effect of a multispecies probiotic on the intestinal microbiota and bowel movements in healthy volunteers taking the antibiotic amoxycillin. Am. J. Gastroenterol. 2008;103:178–189. doi: 10.1111/j.1572-0241.2007.01547.x.
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Zhang M.M., Qian W., Qin Y.Y., He J., Zhou Y.H. Probiotics in Helicobacter pylori eradication therapy: A systematic review and meta-analysis. World J. Gastroenterol. 2015;21:4345–4357. doi: 10.3748/wjg.v21.i14.4345.
    1. Szajewska H., Kołodziej M. Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment. Pharmacol. Ther. 2015;42:1149–1157. doi: 10.1111/apt.13404.
    1. McFarland L.V., Huang Y., Wang L., Malfertheiner P. Systematic review and meta-analysis: Multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United Eur. Gastroenterol. J. 2015;4:546–561. doi: 10.1177/2050640615617358.
    1. Hickson M., D’Souza A.L., Muthu N., Rogers T.R., Want S., Rajkumar C., Bulpitt C.J. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: Randomised double blind placebo controlled trial. BMJ. 2007;335:80. doi: 10.1136/bmj.39231.599815.55.
    1. Dietrich C.G., Kottmann T., Alavi M. Commercially available probiotic drinks containing Lactobacillus casei DN-114001 reduce antibiotic-associated diarrhea. World J. Gastroenterol. 2014;20:15837–15844. doi: 10.3748/wjg.v20.i42.15837.
    1. Sýkora J., Valecková K., Amlerová J., Siala K., Dedek P., Watkins S., Varvarovská J., Stožický F., Pazdiora P., Schwarz J. Effects of a specially designed fermented milk product containing probiotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: A prospective randomized double-blind study. J. Clin. Gastroenterol. 2005;39:692–698. doi: 10.1097/01.mcg.0000173855.77191.44.
    1. Alvarez A., Tap J., Chambaud I., Cools-Portier S., Quinquis L., Bourlioux P., Marteau P., Guillemard E., Schrezenmeir J., Derrien M. Consumption of a mix of strains in a fermented milk product is safe and functionally enriches the human gut microbiome of healthy subjects. Sci. Rep. 2020;10:15974. doi: 10.1038/s41598-020-72161-w.
    1. World Health Organization . The Treatment of Diarrhoea: A Manual for Physicians and Other Senior Health Workers, 4th Rev. World Health Organization; Geneva, Switzerland: 2005.
    1. Duman D.G., Bor S., Ozütemiz O., Sahin T., Oğuz D., Iştan F., Vural T., Sandkci M., Işksal F., Simşek I., et al. Efficacy and safety of Saccharomyces boulardii in prevention of antibiotic-associated diarrhoea due to Helicobacter pylori eradication. Eur. J. Gastroenterol. Hepatol. 2005;17:1357–1361. doi: 10.1097/00042737-200512000-00015.
    1. Emara M.H., Mohamed S.Y., Abdel-Aziz H.R. Lactobacillus reuteri in management of Helicobacter pylori infection in dyspeptic patients: A double-blind placebo-controlled randomized clinical trial. Ther. Adv. Gastroenterol. 2014;7:4–13. doi: 10.1177/1756283X13503514.
    1. Rajkumar C., Wilks M., Islam J., Ali K., Raftery J., Davies K.A., Timeyin J., Cheek E., Cohen J., Wright J., et al. Do probiotics prevent antibiotic-associated diarrhoea? Results of a multicentre randomized placebo-controlled trial. J. Hosp. Infect. 2020;105:280–288. doi: 10.1016/j.jhin.2020.01.018.
    1. Yuan Y., Ford A.C., Khan K.J., Gisbert J.P., Forman D., Leontiadis G.I., Tse F., Calvet X., Fallone C., Fischbach L., et al. Optimum duration of regimens for Helicobacter pylori eradication. Cochrane Database Syst. Rev. 2013:CD008337. doi: 10.1002/14651858.CD008337.pub2.
    1. Frost F., Kacprowski T., Rühlemann M., Bang C., Franke A., Zimmermann K., Nauck M., Völker U., Völzke H., Biffar R., et al. Helicobacter pylori infection associates with fecal microbiota composition and diversity. Sci. Rep. 2019;9:20100. doi: 10.1038/s41598-019-56631-4.
    1. Yang F., Sun J., Luo H., Ren H., Zhou H., Lin Y., Han M., Chen B., Liao H., Brix S., et al. Assessment of fecal DNA extraction protocols for metagenomic studies. GigaScience. 2020;9:giaa071. doi: 10.1093/gigascience/giaa071.
    1. Liou J.-M., Chen C.-C., Chang C.-M., Fang Y.-J., Bair M.-J., Chen P.-Y., Chang C.-Y., Hsu Y.-C., Chen M.-J., Chen C.-C., et al. Long-term changes of gut microbiota, antibiotic resistance, and metabolic parameters after Helicobacter pylori eradication: A multicentre, open-label, randomised trial. Lancet Infect. Dis. 2019;19:1109–1120. doi: 10.1016/S1473-3099(19)30272-5.
    1. Yanagi H., Tsuda A., Matsushima M., Takahashi S., Ozawa G., Koga Y., Takagi A. Changes in the gut microbiota composition and the plasma ghrelin level in patients with Helicobacter pylori-infected patients with eradication therapy. BMJ Open Gastroenterol. 2017;4:e000182. doi: 10.1136/bmjgast-2017-000182.
    1. Gupta V.K., Kim M., Bakshi U., Cunningham K.Y., Davis J.M., Lazaridis K.N., Nelson H., Chia N., Sung J. A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 2020;11:4635. doi: 10.1038/s41467-020-18476-8.
    1. Suez J., Zmora N., Zilberman-Schapira G., Mor U., Dori-Bachash M., Bashiardes S., Zur M., Regev-Lehavi D., Ben-Zeev Brik R., Federici S., et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174:1406–1423.e1416. doi: 10.1016/j.cell.2018.08.047.
    1. Tap J., Ruppé E., Derrien M. Reference Module in Food Science. Elsevier; Amsterdam, The Netherlands: 2021. The human gut microbiota in all its states: From disturbance to resilience.
    1. Crouzet L., Derrien M., Cherbuy C., Plancade S., Foulon M., Chalin B., van Hylckama Vlieg J.E.T., Grompone G., Rigottier-Gois L., Serror P. Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Sci. Rep. 2018;8:5098. doi: 10.1038/s41598-018-23437-9.
    1. Natividad J.M., Lamas B., Pham H.P., Michel M.-L., Rainteau D., Bridonneau C., da Costa G., van Hylckama Vlieg J., Sovran B., Chamignon C., et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 2018;9:2802. doi: 10.1038/s41467-018-05249-7.
    1. Richard M.L., Sokol H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 2019;16:331–345. doi: 10.1038/s41575-019-0121-2.
    1. Bühling A., Radun D., Müller W.A., Malfertheiner P. Influence of anti-Helicobacter triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora. Aliment. Pharmacol. Ther. 2001;15:1445–1452. doi: 10.1046/j.1365-2036.2001.01033.x.
    1. Lino T., Mori K., Tanaka K., Suzuki K.I., Harayama S. Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int. J. Syst. Evol. Microbiol. 2007;57:1840–1845. doi: 10.1099/ijs.0.64717-0.
    1. Djouzi Z., Andrieux C., Degivry M.-C., Bouley C., Szylit O. The association of yogurt starters with Lactobacillus casei DN 114.001 in fermented milk alters the composition and metabolism of intestinal microflora in germ-free rats and in human flora–associated rats. J. Nutr. 1997;127:2260–2266. doi: 10.1093/jn/127.11.2260.
    1. Veiga P., Gallini C.A., Beal C., Michaud M., Delaney M.L., DuBois A., Khlebnikov A., van Hylckama Vlieg J.E.T., Punit S., Glickman J.N., et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. USA. 2010;107:18132–18137. doi: 10.1073/pnas.1011737107.
    1. Myllyluoma E., Veijola L., Ahlroos T., Tynkkynen S., Kankuri E., Vapaatalo H., Rautelin H., Korpela R. Probiotic supplementation improves tolerance to Helicobacter pylori eradication therapy--a placebo-controlled, double-blind randomized pilot study. Aliment. Pharmacol. Ther. 2005;21:1263–1272. doi: 10.1111/j.1365-2036.2005.02448.x.
    1. Cox A.J., Makino H., Cripps A.W., West N.P. Recovery of Lactobacillus casei strain Shirota (LcS) from faeces with 14 days of fermented milk supplementation in healthy Australian adults. Asia Pac. J. Clin. Nutr. 2019;28:734–739. doi: 10.6133/apjcn.201912_28(4).0009.
    1. Martín R., Chamignon C., Mhedbi-Hajri N., Chain F., Derrien M., Escribano-Vázquez U., Garault P., Cotillard A., Pham H.P., Chervaux C., et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. 2019;9:5398. doi: 10.1038/s41598-019-41738-5.
    1. Shastri Y.M., Bergis D., Povse N., Schäfer V., Shastri S., Weindel M., Ackermann H., Stein J. Prospective multicenter study evaluating fecal calprotectin in adult acute bacterial diarrhea. Am. J. Med. 2008;121:1099–1106. doi: 10.1016/j.amjmed.2008.06.034.
    1. Barbut F., Gouot C., Lapidus N., Suzon L., Syed-Zaidi R., Lalande V., Eckert C. Faecal lactoferrin and calprotectin in patients with Clostridium difficile infection: A case-control study. Eur. J. Clin. Microbiol. Infect. Dis. 2017;36:2423–2430. doi: 10.1007/s10096-017-3080-y.
    1. Lundgren D., Eklöf V., Palmqvist R., Hultdin J., Karling P. Proton pump inhibitor use is associated with elevated faecal calprotectin levels. A cross-sectional study on subjects referred for colonoscopy. Scand. J. Gastroenterol. 2019;54:152–157. doi: 10.1080/00365521.2019.1566493.
    1. Ho J., Camilli G., Griffiths J.S., Richardson J.P., Kichik N., Naglik J.R. Candida albicans and candidalysin in inflammatory disorders and cancer. Immunology. 2021;162:11–16. doi: 10.1111/imm.13255.

Source: PubMed

Подписаться