Preclinical Targeted α- and β--Radionuclide Therapy in HER2-Positive Brain Metastasis Using Camelid Single-Domain Antibodies

Janik Puttemans, Yana Dekempeneer, Jos L Eersels, Heleen Hanssens, Pieterjan Debie, Marleen Keyaerts, Albert D Windhorst, Frank van der Aa, Quentin Lecocq, Karine Breckpot, Alfred Morgenstern, Frank Bruchertseifer, Tony Lahoutte, Nick Devoogdt, Matthias D'Huyvetter, Janik Puttemans, Yana Dekempeneer, Jos L Eersels, Heleen Hanssens, Pieterjan Debie, Marleen Keyaerts, Albert D Windhorst, Frank van der Aa, Quentin Lecocq, Karine Breckpot, Alfred Morgenstern, Frank Bruchertseifer, Tony Lahoutte, Nick Devoogdt, Matthias D'Huyvetter

Abstract

HER2-targeted therapies have drastically improved the outcome for breast cancer patients. However, when metastasis to the brain is involved, current strategies fail to hold up to the same promise. Camelid single-domain antibody-fragments (sdAbs) have been demonstrated to possess favorable properties for detecting and treating cancerous lesions in vivo using different radiolabeling methods. Here we evaluate the anti-HER2 sdAb 2Rs15d, coupled to diagnostic γ- and therapeutic α- and β--emitting radionuclides for the detection and treatment of HER2pos brain lesions in a preclinical setting. 2Rs15d was radiolabeled with 111In, 225Ac and 131I using DTPA- and DOTA-based bifunctional chelators and Sn-precursor of SGMIB respectively and evaluated in orthotopic tumor-bearing athymic nude mice. Therapeutic efficacy as well as systemic toxicity were determined for 131I- and 225Ac-labeled sdAbs and compared to anti-HER2 monoclonal antibody (mAb) trastuzumab in two different HER2pos tumor models. Radiolabeled 2Rs15d showed high and specific tumor uptake in both HER2pos SK-OV-3-Luc-IP1 and HER2pos MDA-MB-231Br brain lesions, whereas radiolabeled trastuzumab was unable to accumulate in intracranial SK-OV-3-Luc-IP1 tumors. Administration of [131I]-2Rs15d and [225Ac]-2Rs15d alone and in combination with trastuzumab showed a significant increase in median survival in 2 tumor models that remained largely unresponsive to trastuzumab treatment alone. Histopathological analysis revealed no significant early toxicity. Radiolabeled sdAbs prove to be promising vehicles for molecular imaging and targeted radionuclide therapy of metastatic lesions in the brain. These data demonstrate the potential of radiolabeled sdAbs as a valuable add-on treatment option for patients with difficult-to-treat HER2pos metastatic cancer.

Keywords: HER2; brain metastasis; single-domain antibody fragment; targeted radionuclide therapy.

Conflict of interest statement

J.E. is an employee of Camel-IDS. M.D., N.D. and T.L. are employees or consultants of Camel-IDS and hold ownership interest (including patents) in sdAb radiotherapeutics. T.L. is member of the scientific advisory board of Ion Beam Applications (IBA) and member of the strategic committee of the Institute of RadioElements (IRE). M.K. received travel and accommodation expenses from Bayer, research funding from Camel-IDS and holds patents on sdAb imaging and therapy. All other authors have declared no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
In vitro trastuzumab-mediated growth inhibition of (A) SKOV3.IP1 cells, naturally expressing high HER2 levels and (B) 231Br cells, stably transfected to express high levels of HER2. Cells were cultured with different trastuzumab concentrations from day 0–5, followed by trastuzumab-free medium at day 6–10. Concentration-dependent growth inhibition can be observed for SKOV3.IP1 cells during trastuzumab treatment. 231Br cell growth was not hampered, regardless of trastuzumab concentration. (ns: not significant, ** p < 0.01, *** p < 0.005).
Figure 2
Figure 2
(A) Follow-up of SKOV3.IP1 an 231Br tumor growth in function of time using body weight measurements, and (B) quantitative (photons/s/cm2/steradian) and (C) visual in vivo bioluminescence imaging at day 3, 7, 10, 14, 17 and 21 post-inoculation (images shown of SKOV3.IP1 tumors and are representative for both tumor models). Values are presented as mean ± SD.
Figure 3
Figure 3
Ex vivo biodistribution of radiolabeled anti-HER2 tracers in brain tumor-bearing mice. (A) Ex vivo biodistribution analyses of [111In]-labeled compounds in HER2pos tumor-bearing mice, at 1 h p.i. (sdAbs) and 3 d p.i. (mAb) (n = 4). For sdAbs only kidneys show elevated uptake, whereas trastuzumab has increased tracer uptake in all highly vascularized organs. Detail of tracer uptake in tumor, brain and blood shows a significantly higher tumor uptake for [111In]-2Rs15d in (B) SKOV3.IP1 and (C) 231Br brain tumors compared to the non-targeting [111In]-R3B23. Increased tumor-to-brain ratio of [111In]-trastuzumab was only observed in 231Br tumors (C). (ns: not significant, ** p < 0.01, *** p < 0.005, **** p < 0.001).
Figure 4
Figure 4
Sagittal view of fused whole-body and brain-focused µSPECT/CT scan images of anti-HER2 [111In]-2Rs15d, non-targeting [111In]-R3B23 and anti-HER2 [111In]-trastuzumab 1 h and 3 days p.i. in SKOV3.IP1 (Left) and 231Br (Right) tumor models. One representative image of each group (n = 4) is shown. Tumor-targeting is visible for [111In]-2Rs15d in both tumor models, whereas [111In]-trastuzumab was only able to accumulate in 231Br tumors. High uptake was also observed in highly vascularized organs up to 3 days after injection. There was no aspecific leakage of non-targeting [111In]-R3B23 into the tumor site. T: tumor, Bl: blood, K: kidney, H: heart, L: liver, B: bladder, TB: total body, BF: brain focus.
Figure 5
Figure 5
Event-free survival during TRNT. Events were defined as (i) mortality, (ii) weight loss > 20%, (iii) immobility, (iv) unresponsiveness to external stimuli. 231Br tumor-bearing mice (n = 8 per group, tumor inoculation on Day 0) were treated with intravenous injections of [131I]-2Rs15d (Day 7, 14), combination treatment of [131I]-2Rs15d (Day 7, 14) and trastuzumab (Loading dose; day 7-maintenance dose; day 10, 14, 17, 21, 24, 28) or trastuzumab as single agent (Loading dose; day 7-maintenance dose; day 10, 14, 17, 21, 24, 28). Control groups received either vehicle buffer or unlabeled 2Rs15d in equimolar quantities as treated groups at identical timepoints (A). 231Br tumor-bearing mice (n = 3, tumor inoculation on Day 0) received [131I]-2Rs15d (Day 7, 14), followed by µSPECT/CT imaging 2 h p.i. Fused µSPECT/CT images (B) and image quantification (C) showed accumulation of activity in brain tumor, thyroid and kidneys. Trast: Trastuzumab, T: tumor, K: kidney, Th: thyroid, TB: total body, BF: brain focus (ns: not significant, * p < 0.05).
Figure 6
Figure 6
Event-free survival during targeted alpha therapy. Events were defined as (i) mortality, (ii) weight loss > 20%, (iii) immobility, (iv) unresponsiveness to external stimuli. Trastuzumab-sensitive SKOV3.IP1 (A) and trastuzumab-resistant 231Br (B) tumor-bearing mice (n = 8 per group, tumor inoculation on Day 0) were treated with intravenous injections of either [225Ac]-2Rs15d (Day 7, 10, 14), combination treatment of [225Ac]-2Rs15d (Day 7, 14, 21) and trastuzumab (Loading dose; day 7-maintenance dose; day 10, 14, 17, 21, 24, 28) or trastuzumab as single agent (Loading dose; day 7-maintenance dose; day 10, 14, 17, 21, 24, 28). The control group received vehicle buffer at identical timepoints as treated groups. 150 mg/kg gelofusin was co-administered with [225Ac]-2Rs15d in order to reduce kidney retention. (ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.005).

References

    1. Arkosy P., Toth J., Beres E., Toth D., Szivos L., Nagy J., Klekner A., Virga J. Prognosis and Treatment Outcomes of Patients Undergoing Resection of Brain Metastases from Breast Cancer. Anticancer Res. 2020;40:1759–1770. doi: 10.21873/anticanres.14130.
    1. Lin N.U., Winer E.P. Brain metastases: The HER2 paradigm. Clin. Cancer Res. 2007;13:1648–1655. doi: 10.1158/1078-0432.CCR-06-2478.
    1. Rostami R., Mittal S., Rostami P., Tavassoli F., Jabbari B. Brain metastasis in breast cancer: A comprehensive literature review. J. Neurooncol. 2016;127:407–414. doi: 10.1007/s11060-016-2075-3.
    1. Pelletier E.M., Amonkar M.M., Shim B. Incidence and prevalence of brain metastases among patients with advanced breast cancer in a United States managed-care population. J. Clin. Oncol. 2007;25:6624. doi: 10.1200/jco.2007.25.18_suppl.6624.
    1. Stemmler J., Schmitt M., Willems A., Bernhard H., Harbeck N., Heinemann V. Brain metastases in HER2-overexpressing metastatic breast cancer: Comparative analysis of trastuzumab levels in serum and cerebrospinal fluid. J. Clin. Oncol. 2006;24:1525. doi: 10.1200/jco.2006.24.18_suppl.1525.
    1. Vogel C.L., Cobleigh M.A., Tripathy D., Gutheil J.C., Harris L.N., Fehrenbacher L., Slamon D.J., Murphy M., Novotny W.F., Burchmore M., et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002;20:719–726. doi: 10.1200/JCO.2002.20.3.719.
    1. Kallioniemi O.P., Holli K., Visakorpi T., Koivula T., Helin H.H., Isola J.J. Association of c-erbB-2 protein over-expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int. J. Cancer. 1991;49:650–655. doi: 10.1002/ijc.2910490504.
    1. Romond E.H., Perez E.A., Bryant J., Suman V.J., Geyer C.E., Jr., Davidson N.E., Tan-Chiu E., Martino S., Paik S., Kaufman P.A., et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005;353:1673–1684. doi: 10.1056/NEJMoa052122.
    1. Olson E.M., Abdel-Rasoul M., Maly J., Wu C.S., Lin N.U., Shapiro C.L. Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Ann. Oncol. 2013;24:1526–1533. doi: 10.1093/annonc/mdt036.
    1. Lin N.U., Dieras V., Paul D., Lossignol D., Christodoulou C., Stemmler H.J., Roche H., Liu M.C., Greil R., Ciruelos E., et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res. 2009;15:1452–1459. doi: 10.1158/1078-0432.CCR-08-1080.
    1. Puttemans J., Lahoutte T., D’Huyvetter M., Devoogdt N. Beyond the Barrier: Targeted Radionuclide Therapy in Brain Tumors and Metastases. Pharmaceutics. 2019;11:376. doi: 10.3390/pharmaceutics11080376.
    1. Wang H., Wang Y., Xiao Z., Li W., Dimitrov D.S., Chen W. Human Domain Antibodies to Conserved Epitopes on HER2 Potently Inhibit Growth of HER2-Overexpressing Human Breast Cancer Cells In Vitro. Antibodies (Basel) 2019;8:25. doi: 10.3390/antib8010025.
    1. Debie P., Lafont C., Defrise M., Hansen I., van Willigen D.M., van Leeuwen F.W.B., Gijsbers R., D’Huyvetter M., Devoogdt N., Lahoutte T., et al. Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J. Control. Release. 2020;317:34–42. doi: 10.1016/j.jconrel.2019.11.014.
    1. Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F.P., Gevaert T., Simon P., et al. Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. J. Nucl. Med. 2016;57:27–33. doi: 10.2967/jnumed.115.162024.
    1. Keyaerts M., Xavier C., Everaert H., Vaneycken I., Fontaine C., Decoster L., Vanhoeij M., Caveliers V., Lahoutte T. Phase II trial of HER2-PET/CT using 68Ga-anti-HER2 VHH1 for characterization of HER2 presence in brain metastases of breast cancer patients. Ann. Oncol. 2019;30 doi: 10.1093/annonc/mdz095.081.
    1. D’Huyvetter M., De Vos J., Xavier C., Pruszynski M., Sterckx Y.G.J., Massa S., Raes G., Caveliers V., Zalutsky M.R., Lahoutte T., et al. (131)I-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment. Clin. Cancer Res. 2017;23:6616–6628. doi: 10.1158/1078-0432.CCR-17-0310.
    1. D’Huyvetter M., Vincke C., Xavier C., Aerts A., Impens N., Baatout S., De Raeve H., Muyldermans S., Caveliers V., Devoogdt N., et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4:708–720. doi: 10.7150/thno.8156.
    1. Krasniqi A., D’Huyvetter M., Xavier C., Van der Jeught K., Muyldermans S., Van Der Heyden J., Lahoutte T., Tavernier J., Devoogdt N. Theranostic Radiolabeled Anti-CD20 sdAb for Targeted Radionuclide Therapy of Non-Hodgkin Lymphoma. Mol. Cancer Ther. 2017;16:2828–2839. doi: 10.1158/1535-7163.MCT-17-0554.
    1. Dekempeneer Y., Keyaerts M., Krasniqi A., Puttemans J., Muyldermans S., Lahoutte T., D’Huyvetter M., Devoogdt N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther. 2016;16:1035–1047. doi: 10.1080/14712598.2016.1185412.
    1. Pruszynski M., D’Huyvetter M., Bruchertseifer F., Morgenstern A., Lahoutte T. Evaluation of an Anti-HER2 Nanobody Labeled with (225)Ac for Targeted alpha-Particle Therapy of Cancer. Mol. Pharm. 2018;15:1457–1466. doi: 10.1021/acs.molpharmaceut.7b00985.
    1. Dekempeneer Y., Back T., Aneheim E., Jensen H., Puttemans J., Xavier C., Keyaerts M., Palm S., Albertsson P., Lahoutte T., et al. Labeling of Anti-HER2 Nanobodies with Astatine-211: Optimization and the Effect of Different Coupling Reagents on Their in Vivo Behavior. Mol. Pharm. 2019;16:3524–3533. doi: 10.1021/acs.molpharmaceut.9b00354.
    1. Vaneycken I., Devoogdt N., Van Gassen N., Vincke C., Xavier C., Wernery U., Muyldermans S., Lahoutte T., Caveliers V. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 2011;25:2433–2446. doi: 10.1096/fj.10-180331.
    1. Van Mechelen M., Van Herck A., Punie K., Nevelsteen I., Smeets A., Neven P., Weltens C., Han S., Vanderstichele A., Floris G., et al. Behavior of metastatic breast cancer according to subtype. Breast Cancer Res. Treat. 2020 doi: 10.1007/s10549-020-05597-3.
    1. Gabos Z., Sinha R., Hanson J., Chauhan N., Hugh J., Mackey J.R., Abdulkarim B. Prognostic Significance of Human Epidermal Growth Factor Receptor Positivity for the Development of Brain Metastasis After Newly Diagnosed Breast Cancer. J. Clin. Oncol. 2006;24:5658–5663. doi: 10.1200/JCO.2006.07.0250.
    1. Pestalozzi B.C., Holmes E., de Azambuja E., Metzger-Filho O., Hogge L., Scullion M., Lang I., Wardley A., Lichinitser M., Sanchez R.I., et al. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: A retrospective substudy of the HERA trial (BIG 1-01) Lancet Oncol. 2013;14:244–248. doi: 10.1016/S1470-2045(13)70017-2.
    1. Dehdashti F., Wu N., Bose R., Naughton M.J., Ma C.X., Marquez-Nostra B.V., Diebolder P., Mpoy C., Rogers B.E., Lapi S.E., et al. Evaluation of [(89)Zr]trastuzumab-PET/CT in differentiating HER2-positive from HER2-negative breast cancer. Breast Cancer Res. Treat. 2018;169:523–530. doi: 10.1007/s10549-018-4696-z.
    1. Baum R.P., Prasad V., Muller D., Schuchardt C., Orlova A., Wennborg A., Tolmachev V., Feldwisch J. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J. Nucl. Med. 2010;51:892–897. doi: 10.2967/jnumed.109.073239.
    1. Dijkers E.C., Oude Munnink T.H., Kosterink J.G., Brouwers A.H., Jager P.L., de Jong J.R., van Dongen G.A., Schroder C.P., Lub-de Hooge M.N., de Vries E.G. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 2010;87:586–592. doi: 10.1038/clpt.2010.12.
    1. Ulaner G.A., Lyashchenko S.K., Riedl C., Ruan S., Zanzonico P.B., Lake D., Jhaveri K., Zeglis B., Lewis J.S., O’Donoghue J.A. First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using (89)Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer. J. Nucl. Med. 2018;59:900–906. doi: 10.2967/jnumed.117.202010.
    1. Boskovitz A., McLendon R.E., Okamura T., Sampson J.H., Bigner D.D., Zalutsky M.R. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of alpha-particle-emitting (211)At-labeled trastuzumab. Nucl. Med. Biol. 2009;36:659–669. doi: 10.1016/j.nucmedbio.2009.04.003.
    1. Jannetti S.A., Carlucci G., Carney B., Kossatz S., Shenker L., Carter L.M., Salinas B., Brand C., Sadique A., Donabedian P.L., et al. PARP-1-Targeted Radiotherapy in Mouse Models of Glioblastoma. J. Nucl. Med. 2018;59:1225–1233. doi: 10.2967/jnumed.117.205054.
    1. Choi J., Vaidyanathan G., Koumarianou E., Kang C.M., Zalutsky M.R. Astatine-211 labeled anti-HER2 5F7 single domain antibody fragment conjugates: Radiolabeling and preliminary evaluation. Nucl. Med. Biol. 2018;56:10–20. doi: 10.1016/j.nucmedbio.2017.09.003.
    1. Robinson M.K., Shaller C., Garmestani K., Plascjak P.S., Hodge K.M., Yuan Q.A., Marks J.D., Waldmann T.A., Brechbiel M.W., Adams G.P. Effective treatment of established human breast tumor xenografts in immunodeficient mice with a single dose of the alpha-emitting radioisotope astatine-211 conjugated to anti-HER2/neu diabodies. Clin. Cancer Res. 2008;14:875–882. doi: 10.1158/1078-0432.CCR-07-1250.
    1. Cedrowska E., Pruszynski M., Gaweda W., Zuk M., Krysinski P., Bruchertseifer F., Morgenstern A., Karageorgou M.A., Bouziotis P., Bilewicz A. Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with (225)Ac as a Perspective Tool for Combined alpha-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules. 2020;25:1025. doi: 10.3390/molecules25051025.
    1. Keyaerts M., Vos J.D., Duhoux F.P., Caveliers V., Fontaine C., Vanhoeij M., D’Huyvetter M., Everaert H., Ghykiere P., Devoogdt N., et al. Phase I results of CAM-H2: Safety profile and tumor targeting in patients. J. Clin. Oncol. 2018;36:e13017. doi: 10.1200/JCO.2018.36.15_suppl.e13017.
    1. Betzer O., Shilo M., Opochinsky R., Barnoy E., Motiei M., Okun E., Yadid G., Popovtzer R. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study. Nanomedicine (Lond.) 2017;12:1533–1546. doi: 10.2217/nnm-2017-0022.
    1. Blanchette M., Tremblay L., Lepage M., Fortin D. Impact of drug size on brain tumor and brain parenchyma delivery after a blood-brain barrier disruption. J. Cereb. Blood Flow Metab. 2014;34:820–826. doi: 10.1038/jcbfm.2014.14.
    1. Mendes D., Alves C., Afonso N., Cardoso F., Passos-Coelho J.L., Costa L., Andrade S., Batel-Marques F. The benefit of HER2-targeted therapies on overall survival of patients with metastatic HER2-positive breast cancer--a systematic review. Breast Cancer Res. 2015;17:140. doi: 10.1186/s13058-015-0648-2.
    1. Barok M., Joensuu H., Isola J. Trastuzumab emtansine: Mechanisms of action and drug resistance. Breast Cancer Res. 2014;16:209. doi: 10.1186/bcr3621.
    1. David M.A., Jones D.R., Tayebi M. Potential candidate camelid antibodies for the treatment of protein-misfolding diseases. J. Neuroimmunol. 2014;272:76–85. doi: 10.1016/j.jneuroim.2014.05.001.
    1. Nabuurs R.J.A., Rutgers K.S., Welling M.M., Metaxas A., de Backer M.E., Rotman M., Bacskai B.J., van Buchem M.A., van der Maarel S.M., van der Weerd L. In vivo detection of amyloid-β deposits using heavy chain antibody fragments in a transgenic mouse model for Alzheimer’s disease. PLoS ONE. 2012;7:e38284. doi: 10.1371/journal.pone.0038284.
    1. Li T., Vandesquille M., Koukouli F., Dudeffant C., Youssef I., Lenormand P., Ganneau C., Maskos U., Czech C., Grueninger F., et al. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. J. Control. Release. 2016;243:1–10. doi: 10.1016/j.jconrel.2016.09.019.
    1. Chatterjee D., Bhatt M., Butler D., De Genst E., Dobson C.M., Messer A., Kordower J.H. Proteasome-targeted nanobodies alleviate pathology and functional decline in an alpha-synuclein-based Parkinson’s disease model. NPJ Parkinsons Dis. 2018;4:25. doi: 10.1038/s41531-018-0062-4.
    1. Iljina M., Hong L., Horrocks M.H., Ludtmann M.H., Choi M.L., Hughes C.D., Ruggeri F.S., Guilliams T., Buell A.K., Lee J.E., et al. Nanobodies raised against monomeric a-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biol. 2017;15:57. doi: 10.1186/s12915-017-0390-6.
    1. Zhou Z., Vaidyanathan G., McDougald D., Kang C.M., Balyasnikova I., Devoogdt N., Ta A.N., McNaughton B.R., Zalutsky M.R. Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation. Mol. Imaging Biol. 2017;19:867–877. doi: 10.1007/s11307-017-1082-x.
    1. Palmieri D., Bronder J.L., Herring J.M., Yoneda T., Weil R.J., Stark A.M., Kurek R., Vega-Valle E., Feigenbaum L., Halverson D., et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res. 2007;67:4190–4198. doi: 10.1158/0008-5472.CAN-06-3316.
    1. Terrell-Hall T.B., Nounou M.I., El-Amrawy F., Griffith J.I.G., Lockman P.R. Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget. 2017;8:83734–83744. doi: 10.18632/oncotarget.19634.
    1. Santoro L., Mora-Ramirez E., Trauchessec D., Chouaf S., Eustache P., Pouget J.-P., Kotzki P.-O., Bardiès M., Deshayes E. Implementation of patient dosimetry in the clinical practice after targeted radiotherapy using [(177)Lu-[DOTA0, Tyr3]-octreotate. EJNMMI Res. 2018;8:103. doi: 10.1186/s13550-018-0459-4.
    1. Kratochwil C., Giesel F.L., Bruchertseifer F., Mier W., Apostolidis C., Boll R., Murphy K., Haberkorn U., Morgenstern A. ²¹³Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:2106–2119. doi: 10.1007/s00259-014-2857-9.
    1. Kratochwil C., Bruchertseifer F., Rathke H., Bronzel M., Apostolidis C., Weichert W., Haberkorn U., Giesel F.L., Morgenstern A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017;58:1624–1631. doi: 10.2967/jnumed.117.191395.
    1. Krolicki L., Bruchertseifer F., Morgenstern A., Kunikowska J., Koziara H., Królicki B., Jakuciński M., Pawlak D., Apostolidis C., Rola R., et al. Safety and Therapeutic Efficacy of 225Ac-DOTA-Substance P for Therapy of Brain Tumors. JMIRS. 2019;50:S22. doi: 10.1016/j.jmir.2019.03.070.
    1. Sathekge M.M., Bruchertseifer F., Lawal I.O., Vorster M., Knoesen O., Lengana T., Boshomane T.G., Mokoala K.K., Morgenstern A. Treatment of brain metastases of castration-resistant prostate cancer with 225Ac-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:1756–1757. doi: 10.1007/s00259-019-04354-z.
    1. Bruchertseifer F., Morgenstern A., Giesel F., Apostolidis C., Haberkorn U., Kratochwil C. Targeted Alpha Therapy of mCRPC with 225Actinium-PSMA617: Dosimetry, toxicity and duration of tumor-control. J. Nucl. Med. 2018;59:530.
    1. Baselga J., Albanell J. Mechanism of action of anti-HER2 monoclonal antibodies. Ann. Oncol. 2001;12:S35–S41. doi: 10.1093/annonc/12.suppl_1.S35.
    1. Sattiraju A., Xiong X., Pandya D.N., Wadas T.J., Xuan A., Sun Y., Jung Y., Sai K.K.S., Dorsey J.F., Li K.C., et al. Alpha Particle Enhanced Blood Brain/Tumor Barrier Permeabilization in Glioblastomas Using Integrin Alpha-v Beta-3-Targeted Liposomes. Mol. Cancer Ther. 2017;16:2191–2200. doi: 10.1158/1535-7163.MCT-16-0907.
    1. Sattiraju A., Xiong X., Pandya D., Sun Y., Jung Y., Wadas T., Li K., Mintz A. Permeabilizing the blood-brain-barrier with α-particle therapy. J. Nucl. Med. 2015;56:1230.
    1. Lemaire M., D’Huyvetter M., Lahoutte T., Van Valckenborgh E., Menu E., De Bruyne E., Kronenberger P., Wernery U., Muyldermans S., Devoogdt N., et al. Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia. 2014;28:444–447. doi: 10.1038/leu.2013.292.
    1. De Vlieghere E., Carlier C., Ceelen W., Bracke M., De Wever O. Data on in vivo selection of SK-OV-3 Luc ovarian cancer cells and intraperitoneal tumor formation with low inoculation numbers. Data Brief. 2016;6:542–549. doi: 10.1016/j.dib.2015.12.037.
    1. Breckpot K., Dullaers M., Bonehill A., van Meirvenne S., Heirman C., de Greef C., van der Bruggen P., Thielemans K. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J. Gene Med. 2003;5:654–667. doi: 10.1002/jgm.400.
    1. Goyvaerts C., Dingemans J., De Groeve K., Heirman C., Van Gulck E., Vanham G., De Baetselier P., Thielemans K., Raes G., Breckpot K. Targeting of human antigen-presenting cell subsets. J. Virol. 2013;87:11304–11308. doi: 10.1128/JVI.01498-13.
    1. Pruszynski M., Koumarianou E., Vaidyanathan G., Revets H., Devoogdt N., Lahoutte T., Lyerly H.K., Zalutsky M.R. Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J. Nucl. Med. 2014;55:650–656. doi: 10.2967/jnumed.113.127100.
    1. Keyaerts M., Verschueren J., Bos T.J., Tchouate-Gainkam L.O., Peleman C., Breckpot K., Vanhove C., Caveliers V., Bossuyt A., Lahoutte T. Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: Effect on intensity, time kinetics and repeatability of photon emission. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:999–1007. doi: 10.1007/s00259-007-0664-2.
    1. Loening A.M., Gambhir S.S. AMIDE: A free software tool for multimodality medical image analysis. Mol. Imaging. 2003;2:131–137. doi: 10.1162/153535003322556877.

Source: PubMed

Подписаться