A comparison of ketamine and paracetamol for preventing remifentanil induced hyperalgesia in patients undergoing total abdominal hysterectomy

Naime Yalcin, Sema Tuncer Uzun, Ruhiye Reisli, Hale Borazan, Seref Otelcioglu, Naime Yalcin, Sema Tuncer Uzun, Ruhiye Reisli, Hale Borazan, Seref Otelcioglu

Abstract

Background: The aim of this prospective, randomized, placebo-controlled study was to compare the effects of ketamine and paracetamol on preventing remifentanil induced hyperalgesia.

Methods: Ninety patients undergoing total abdominal hysterectomy were randomly assigned to one of three groups to receive (I) either saline infusion; (II) 0.5 mg/kg ketamine iv bolus or (III) 1000 mg iv paracetamol infusion before induction of anesthesia. Until the skin closure, anesthesia was maintained with 0.4 µg/kg/min remifentanil infusion in all groups, additionally Group II received 5 µg/kg/min ketamine infusion. Pressure pain thresholds were measured the day before surgery during the preoperative visit for baseline measurements and repeated postoperatively at 24 and 48 hours (hrs). Pressure pain thresholds were established by digital algometer on three different peri- incisional regions for calculating mean pressure pain threshold values. The visual analogue scale (VAS), sedation scores, total morphine consumption and side effects were assessed postoperatively.

Results: Demographic characteristics, duration of surgery and anesthesia were similar in the three groups. Pain thresholds at the incision region were significantly lower at 24 and 48 hrs postoperatively in Group I than the other Groups (p<0.05). In Group І, pain thresholds were lower compared with preoperative baseline values. Thresholds in Group ІІ and Group ІІІ were higher compared with preoperative baseline values (p<0.05) The VAS scores at all evaluation times were significantly higher in Group І when compared to Group ІІ and at 2, 4, 6 ,12 hrs were higher in Group I than Group ІІІ (p<0.05). The morphine consumption was higher in Group ІІІ at 24 and 48 hrs postoperatively (p<0.05).

Conclusion: It was shown that ketamine and paracetamol were both effective in preventing remifentanil induced hyperalgesia.

Keywords: hyperalgesia.; ketamine; paracetamol; postoperative pain; remifentanil.

Conflict of interest statement

Competing Interests: None of the authors has any personal or financial relationship with the potential to inappropriately influence (bias) his or her actions or this manuscript; no financial or other potential conflicts of interest exist regarding this manuscript (includes involvement with any organization with a direct financial, intellectual, or other interest in the subject of the manuscript).

Figures

Figure 1
Figure 1
Postoperative VAS values of the Groups (mean±SD). * p

Figure 2

Mean Pressure Pain Thresholds (Lb)…

Figure 2

Mean Pressure Pain Thresholds (Lb) determined with digital pressure algometer on inner forearm…

Figure 2
Mean Pressure Pain Thresholds (Lb) determined with digital pressure algometer on inner forearm and the surgical incision area at preoperative period and than postoperative 24th and 48th h (mean±SD ). * p< 0.05; Group I vs Group II; † p< 0.05; Group I vs Group III; ‡ p< 0.05; Group II vs Group III.

Figure 3

Postoperative Sedation Scores of the…

Figure 3

Postoperative Sedation Scores of the Groups (mean±SD). * p

Figure 3
Postoperative Sedation Scores of the Groups (mean±SD). * p
Similar articles
Cited by
References
    1. Joly V, Richebe R, Guignard B, Fletcher D, Maurette P, Sessler DI. et al. Remifentanil-induced Postoperative Hyperalgesia and Its Prevention with Small-dose Ketamine. Anesthesiology. 2005;103:147–155. - PubMed
    1. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P. et al. Acute Opioid Tolerance: Intraoperative Remifentanil Increases Postoperative Pain and Morphine Requirement. Anesthesiology. 2000;93:409– 417. - PubMed
    1. Dershwitz M, Randel GI, Rosow CE, Fragen RJ, Connors PM, Librojo ES. et al. Initial clinical experience with remifentanil, a new opioid metabolized by esterases. Anesth Analg. 1995;81:619– 623. - PubMed
    1. Vanderah TW, Gardell LR, Burgess SE, Ibrahim M, Dogrul A, Zhong CM. et al. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci. 2000;20:7074–7079. - PMC - PubMed
    1. Laulin JP, Celerier E, Larcher A, Le Moal M, Simonnet G. Opiate tolerance to daily heroin administration: an apparent phenomenon associated with enhanced pain sensitivity. Neuroscience. 1999;89:631–636. - PubMed
Show all 26 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 2
Figure 2
Mean Pressure Pain Thresholds (Lb) determined with digital pressure algometer on inner forearm and the surgical incision area at preoperative period and than postoperative 24th and 48th h (mean±SD ). * p< 0.05; Group I vs Group II; † p< 0.05; Group I vs Group III; ‡ p< 0.05; Group II vs Group III.
Figure 3
Figure 3
Postoperative Sedation Scores of the Groups (mean±SD). * p

References

    1. Joly V, Richebe R, Guignard B, Fletcher D, Maurette P, Sessler DI. et al. Remifentanil-induced Postoperative Hyperalgesia and Its Prevention with Small-dose Ketamine. Anesthesiology. 2005;103:147–155.
    1. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P. et al. Acute Opioid Tolerance: Intraoperative Remifentanil Increases Postoperative Pain and Morphine Requirement. Anesthesiology. 2000;93:409– 417.
    1. Dershwitz M, Randel GI, Rosow CE, Fragen RJ, Connors PM, Librojo ES. et al. Initial clinical experience with remifentanil, a new opioid metabolized by esterases. Anesth Analg. 1995;81:619– 623.
    1. Vanderah TW, Gardell LR, Burgess SE, Ibrahim M, Dogrul A, Zhong CM. et al. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci. 2000;20:7074–7079.
    1. Laulin JP, Celerier E, Larcher A, Le Moal M, Simonnet G. Opiate tolerance to daily heroin administration: an apparent phenomenon associated with enhanced pain sensitivity. Neuroscience. 1999;89:631–636.
    1. Mao J. Opioid-induced abnormal pain sensitivity: implications in clinical opioid therapy. Pain. 2002;100:213–217.
    1. Feng J, Kendig JJ. N-methyl-D-aspartate receptors are implicated in hyperresponsiveness following naloxone reversal of alfentanil in isolated rat spinal cord. Neurosci Lett. 1995;189:128–30.
    1. Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesia and morphine tolerance. A current view of their possible interactions. Pain. 1995;62:259–74.
    1. Celerier E, Rivat C, Jun Y, Laulin JP, Larcher A, Reynier P. et al. Long-lasting hyperalgesia induced by fentanyl in rats: Preventive effect of ketamine. Anesthesiology. 2000;92:465–472.
    1. Kissin I, Bright CA, Bradley EL Jr. The effect of ketamine on opioid-induced acute tolerance. Can it explain reduction of opioid consumption with ketamine opioid analgesic combinations? Anesth Analg. 2000:483–488.
    1. Angst MS, Koppert W, Pahl I, Clark DJ, Schmelz M. Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain. 2003;106:49–57.
    1. Koppert W, Sittl R, Scheuber K, Alsheimer M, Schmelz M, Schüttler J. Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology. 2003;99:152–159.
    1. Koppert W, Wehrfritz A, Körber N, Sittl R, Albrecht S, Schüttler J. et al. The cyclooxygenase isozyme inhibitors parecoxib and paracetamol reduce central hyperalgesia in humans. Pain. 2004;108:148– 153.
    1. Malmberg AB, Yaksh TL. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther. 1992;263:136–146.
    1. Svensson CI, Yaksh T. The spinal phospholipase-cyclooxygenase- prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol. 2002;42:553–583.
    1. Wilgus TA, Ross MS, Parrett ML, Oberyszyn TM. Topical application of a selective cyclooxygenase inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins Other Lipid Mediat. 2000;62:367–384.
    1. Seybold VS, Jia YP, Abrahams LG. Cyclooxygenase- 2 contributes to central sensitization in rats with peripheral inflammation. Pain. 2003;105:47–55.
    1. Curatolo M, Petersen -Felix S, Arendt NL, Zbinden AM. Epidural epinephrine and clonidine: segmental analgesia and effects on different pain modalities. Anesthesiology. 1997;87:785–794.
    1. Brennum J, Dahl JB, Moiniche S, Arendt- Nielsen L. Quantitative sensory examination of epidural anaesthesia and analgesia in man: effects of pre- and post-traumatic morphine on hyperalgesia. Pain. 1994;59:261–271.
    1. Pedersen JL, Kehlet H. Secondary hyperalgesia to heat stimuli after burn injury in man. Pain. 1998;76:377–384.
    1. Vinik HR, Kissin I. Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg. 1998;86(6):1307–11.
    1. Jaksch W, Lang S, Reichhalter R, Raab G, Dann K, Fitzal S. Perioperative small-dose S(+)-ketamine has no incremental beneficial effects on postoperative pain when standard-practice opioid infusions are used. Anesth Analg. 2002;94(4):981–6.
    1. Bickel A, Dorfs S, Schmelz M, Forster C, Uhl W, Handwerker HO. Effects of antihyperalgesic drugs on experimentally induced hyperalgesia in man. Pain. 1998;76:317– 325.
    1. Bianchi M, Panerai AE. Effects of lornoxicam, piroxicam and meloxicam in a model of thermal hindpaw hyperalgesia induced by formalin injection in rat tail. Pharmacological Research. 2002;45:101–105.
    1. Chassaing C, Schmidt J, Eschalier A, Cardot JM, Dubray C. Hyperalgesia induced by cutaneous freeze injury for testing analgesics in healthy volunteers. Br J Pharmacol. 2006;61:389– 397.
    1. Himmelseher S, Durieux ME. Ketamine for perioperative pain management. Anesthesiology. 2005;102:211–220.

Source: PubMed

Подписаться