Operant conditioning of spinal reflexes: from basic science to clinical therapy

Aiko K Thompson, Jonathan R Wolpaw, Aiko K Thompson, Jonathan R Wolpaw

Abstract

New appreciation of the adaptive capabilities of the nervous system, recent recognition that most spinal cord injuries are incomplete, and progress in enabling regeneration are generating growing interest in novel rehabilitation therapies. Here we review the 35-year evolution of one promising new approach, operant conditioning of spinal reflexes. This work began in the late 1970's as basic science; its purpose was to develop and exploit a uniquely accessible model for studying the acquisition and maintenance of a simple behavior in the mammalian central nervous system (CNS). The model was developed first in monkeys and then in rats, mice, and humans. Studies with it showed that the ostensibly simple behavior (i.e., a larger or smaller reflex) rests on a complex hierarchy of brain and spinal cord plasticity; and current investigations are delineating this plasticity and its interactions with the plasticity that supports other behaviors. In the last decade, the possible therapeutic uses of reflex conditioning have come under study, first in rats and then in humans. The initial results are very exciting, and they are spurring further studies. At the same time, the original basic science purpose and the new clinical purpose are enabling and illuminating each other in unexpected ways. The long course and current state of this work illustrate the practical importance of basic research and the valuable synergy that can develop between basic science questions and clinical needs.

Keywords: H-reflex; learning and memory; locomotion; spinal cord injury; spinal cord plasticity.

Figures

Figure 1
Figure 1
Operant conditioning of spinal reflexes from 1978 to 2013. The work began with model development and progressed to mechanistic studies and then to clinical applications. These three phases have overlapped to a considerable degree and continue to do so. (SCI: spinal cord injury) (Wolpaw et al., ; Wolpaw, ; Chen and Wolpaw, ; Carp et al., ; Chen et al., ; Thompson et al., 2009, 2013b).
Figure 2
Figure 2
H-reflex operant conditioning results in rats (A) and humans (B), and the hierarchy of brain and spinal cord plasticity that underlies H-reflex conditioning (C). (A) As illustrated in Figure 1 (“Rat H-reflex”), in a rat with chronically implanted EMG electrodes and a tibial nerve cuff, the implant wires travel subcutaneously to a head-mounted connector and then through a flexible cable and a commutator to amplifiers and stimulator. The rat moves freely about the cage as soleus muscle activity is monitored 24 h per day. Whenever the absolute (i.e., rectified) value of soleus EMG stays in a specified range for a randomly varying 2.3- to 2.7-s period, a nerve cuff stimulus elicits an M-wave just above threshold and an H-reflex. Top: For the first 10 days (from day –10 to day 0), the rat is exposed to the control mode, in which no reward occurs and the H-reflex is simply measured to determine its initial size. For the next 50 days, it is exposed to the up-conditioning (HRup) or down-conditioning (HRdown) mode, in which a food-pellet reward occurs whenever the H-reflex is above (HRup) or below (HRdown) a criterion value. A rat averages 2000–6000 trials per day, and the criterion is set to provide 500–1000 rewards per day to satisfy the daily requirement (based on body weight). The background EMG and the M-wave stay constant throughout. Successful conditioning (defined as a change of at least 20% in the correct direction) occurs in 75–80% of the rats (the others remain within 20% of their control value). The graphs show average (± SEM) daily H-reflex sizes for 59 successful HRup rats (red upward triangles) and 81 successful HRdown rats (blue downward triangles). In both groups, mode-appropriate change in H-reflex size develops steadily over the 50 days. Bottom: Average absolute post-stimulus EMG for representative days from an HRup rat (left) and an HRdown rat (right) under the control mode (solid) and near the end of HRup or HRdown conditioning (dashed). After conditioning, the H-reflex is larger in the HRup rat and smaller in the HRdown rat, while the background EMG activity and the M-wave have not changed (Updated from Wolpaw, 1997). (B) As illustrated in Figure 1 (“Human H-reflex”), EMG activity is monitored in a person with EMG electrodes over the soleus muscle and tibial nerve-stimulating electrodes in the popliteal fossa. The person maintains a natural standing posture facing a screen that displays the current absolute level of soleus EMG in relation to a specified range. Whenever the absolute value of soleus EMG stays in this range for several sec, tibial nerve stimulation elicits an M-wave just above threshold and an H-reflex. Top: For the first six sessions (i.e., baseline sessions, from day −14 to day 0), the person is exposed to the control mode, in which the H-reflex is simply measured to determine its initial size. For the next 24 sessions (i.e., conditioning sessions, days 0–56, three sessions per week), the person is exposed to the HRup or HRdown conditioning mode, in which, after each conditioning trial, the screen provides immediate feedback indicating whether the H-reflex was above (HRup) or below (HRdown) a criterion value. The person completes 225 conditioning trials per session. The background EMG and the M-wave stay constant throughout the sessions. Successful conditioning occurs in about 80% of the people. The graphs show average (± SEM) daily H-reflex sizes for six successful HRup people (red upward triangles) and eight successful HRdown people (blue downward triangles). In both groups, mode-appropriate change in H-reflex size develops steadily over the 24 conditioning sessions. Bottom: Average peri-stimulus EMG from an HRup subject (left) and an HRdown subject (right) for a baseline session (i.e., control mode) (solid) and for the last HRup or HRdown conditioning session (dashed) (A stimulus artifact occurs at 0 ms) (From Thompson et al., 2009). (C) A hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. The shaded ovals indicate the spinal and supraspinal sites of definite or probable plasticity associated with operant conditioning of the H-reflex. “MN” is the motoneuron, “CST” is the main corticospinal tract, “IN” is a spinal interneuron, and “GABA IN” is a GABAergic spinal interneuron. Dashed pathways imply the possibility of intervening spinal interneurons. The monosynaptic and probably oligosynaptic H-reflex pathway from groups Ia, II, and Ib afferents to the motoneuron is shown. Definite (dark gray) or probable (light gray) sites of plasticity include: the motoneuron membrane (i.e., firing threshold and axonal conduction velocity); motor unit properties; GABAergic interneurons; GABAergic terminals and C terminals on the motoneuron; the Ia afferent synaptic connection; terminals conveying oligosynaptic groups I and II inhibition or excitation to the motoneuron; sensorimotor cortex; and cerebellum. As described in the text, the data suggest that the reward contingency acts through the inferior olive to guide and maintain plasticity in the cerebellum that guides and maintains plasticity in sensorimotor cortex that (via the CST) guides and maintains plasticity in the spinal cord that is directly responsible for H-reflex change (Modified from Wolpaw, 2010).

References

    1. Abel B. M., Emore E., Thompson A. K. (2011). Operant up-conditioning of the ankle dorsiflexor motor evoked potential in people with multiple sclerosis. Society for Neuroscience 41st Annual Meeting, Program No. 917.919. Washington, D.C.
    1. Barbeau H., Rossignol S. (1987). Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 412, 84–95 10.1016/0006-8993(87)91442-9
    1. Barbeau H. (2003). Locomotor training in neurorehabilitation: emerging rehabilitation concepts. Neurorehabil. Neural Repair 17, 3–11 10.1177/0888439002250442
    1. Bawa P., Stein R. B., Tatton W. G. (1979). Dynamics of a long-latency reflex pathway in the monkey. Biol. Cybern. 34, 107–110 10.1007/bf00365474
    1. Carp J. S., Chen X. Y., Sheikh H., Wolpaw J. R. (2001a). Operant conditioning of rat H-reflex affects motoneuron axonal conduction velocity. Exp. Brain Res. 136, 269–273 10.1007/s002210000608
    1. Carp J. S., Chen X. Y., Sheikh H., Wolpaw J. R. (2001b). Motor unit properties after operant conditioning of rat H-reflex. Exp. Brain Res. 140, 382–386 10.1007/s002210100830
    1. Carp J. S., Tennissen A. M., Chen X. Y., Wolpaw J. R. (2006a). H-reflex operant conditioning in mice. J. Neurophysiol. 96, 1718–1727 10.1152/jn.00470.2006
    1. Carp J. S., Tennissen A. M., Chen X. Y., Wolpaw J. R. (2006b). Diurnal H-reflex variation in mice. Exp. Brain Res. 168, 517–528 10.1007/s00221-005-0106-y
    1. Carp J. S., Wolpaw J. R. (1994). Motoneuron plasticity underlying operantly conditioned decrease in primate H-reflex. J. Neurophysiol. 72, 431–442
    1. Carp J. S., Wolpaw J. R. (1995). Motoneuron properties after operantly conditioned increase in primate H-reflex. J. Neurophysiol. 73, 1365–1373
    1. Chen X., Chen Y., Chen L., Liu R., Wang Y., Yao L. H., et al. (2012). Inferior olive ablation prevents acquisition and long-term maintenance of soleus H-reflex down-conditioning in rats. Society for Neuroscience 42nd Annual Meeting, Program No. 475.417. New Orleans, LA
    1. Chen X. Y., Carp J. S., Chen L., Wolpaw J. R. (2002). Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats. Exp. Brain Res. 144, 88–94 10.1007/s00221-002-1026-8
    1. Chen X. Y., Carp J. S., Chen L., Wolpaw J. R. (2006a). Sensorimotor cortex ablation prevents H-reflex up-conditioning and causes a paradoxical response to down-conditioning in rats. J. Neurophysiol. 96, 119–127 10.1152/jn.01271.2005
    1. Chen X. Y., Chen L., Chen Y., Wolpaw J. R. (2006b). Operant conditioning of reciprocal inhibition in rat soleus muscle. J. Neurophysiol. 96, 2144–2150 10.1152/jn.00253.2006
    1. Chen X. Y., Chen L., Wolpaw J. R. (2001). Time course of H-reflex conditioning in the rat. Neurosci. Lett. 302, 85–88 10.1016/s0304-3940(01)01658-5
    1. Chen X. Y., Chen Y., Chen L., Tennissen A. M., Wolpaw J. R. (2006c). Corticospinal tract transection permanently abolishes H-reflex down-conditioning in rats. J. Neurotrauma 23, 1705–1712 10.1089/neu.2006.23.1705
    1. Chen X. Y., Wolpaw J. R. (1995). Operant conditioning of H-reflex in freely moving rats. J. Neurophysiol. 73, 411–415
    1. Chen X. Y., Wolpaw J. R. (2002). Probable corticospinal tract control of spinal cord plasticity in the rat. J. Neurophysiol. 87, 645–652 10.1152/jn.00391.2001
    1. Chen X. Y., Wolpaw J. R. (2005). Ablation of cerebellar nuclei prevents H-reflex down-conditioning in rats. Learn. Mem. 12, 248–254 10.1101/lm.91305
    1. Chen Y., Chen L., Liu R., Wang Y., Chen X. Y., Wolpaw J. R. (2013).Locomotor impact of beneficial or non-beneficial H-reflex conditioning after spinal cord injury. J. Neurophysiol.. [Epub ahead of print]. 10.1152/jn.00756.2013
    1. Chen Y., Chen L., Wang Y., Wolpaw J. R., Chen X. Y. (2011). Operant conditioning of rat soleus H-reflex oppositely affects another H-reflex and changes locomotor kinematics. J. Neurosci. 31, 11370–11375 10.1523/jneurosci.1526-11.2011
    1. Chen Y., Chen X. Y., Jakeman L. B., Chen L., Stokes B. T., Wolpaw J. R. (2006d). Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. J. Neurosci. 26, 12537–12543 10.1523/JNEUROSCI.2198-06.2006
    1. Chen Y., Chen X. Y., Jakeman L. B., Schalk G., Stokes B. T., Wolpaw J. R. (2005). The interaction of a new motor skill and an old one: H-reflex conditioning and locomotion in rats. J. Neurosci. 25, 6898–6906 10.1523/jneurosci.1684-05.2005
    1. Chen Y., Wang Y., Chen L., Sun C., English A. W., Wolpaw J. R., et al. (2010). H-reflex up-conditioning encourages recovery of EMG activity and H-reflexes after sciatic nerve transection and repair in rats. J. Neurosci. 30, 16128–16136 10.1523/jneurosci.4578-10.2010
    1. Christensen L. O., Andersen J. B., Sinkjaer T., Nielsen J. (2001). Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. J. Physiol. 531, 545–557 10.1111/j.1469-7793.2001.0545i.x
    1. Christensen L. O., Petersen N., Andersen J. B., Sinkjaer T., Nielsen J. B. (2000). Evidence for transcortical reflex pathways in the lower limb of man. Prog. Neurobiol. 62, 251–272 10.1016/s0301-0082(00)00007-1
    1. Courtine G., Gerasimenko Y., van den Brand R., Yew A., Musienko P., Zhong H., et al. (2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 10.1038/nn.2401
    1. Dario A., Scamoni C., Picano M., Casagrande F., Tomei G. (2004). Pharmacological complications of the chronic baclofen infusion in the severe spinal spasticity. Personal experience and review of the literature. J. Neurosurg. Sci. 48, 177–181
    1. Dario A., Tomei G. (2004). A benefit-risk assessment of baclofen in severe spinal spasticity. Drug Saf. 27, 799–818 10.2165/00002018-200427110-00004
    1. Di Giorgio A. M. (1929). Persistenza nell’animale spinale, di asimmetrie posturali e motorie di origine cerebellare. Nota I-III. Arch. Fisiol. 27, 519–542
    1. Di Giorgio A. M. (1942). Azione del cervelletto—neocerebellum—sul tono posturale degli arti e localizzazioni cerebellari nell’animale rombencefalico. Arch. Fisiol. 42, 25–79
    1. Dietz V., Grillner S., Trepp A., Hubli M., Bolliger M. (2009). Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain 132, 2196–2205 10.1093/brain/awp124
    1. Edgerton V. R., Courtine G., Gerasimenko Y. P., Lavrov I., Ichiyama R. M., Fong A. J., et al. (2008). Training locomotor networks. Brain Res. Rev. 57, 241–254 10.1016/j.brainresrev.2007.09.002
    1. Edgerton V. R., Leon R. D., Harkema S. J., Hodgson J. A., London N., Reinkensmeyer D. J., et al. (2001). Retraining the injured spinal cord. J. Physiol. 533, 15–22 10.1111/j.1469-7793.2001.0015b.x
    1. Edgerton V. R., Tillakaratne N. J., Bigbee A. J., de Leon R. D., Roy R. R. (2004). Plasticity of the spinal neural circuitry after injury. Annu. Rev. Neurosci. 27, 145–167 10.1146/annurev.neuro.27.070203.144308
    1. Evarts E. V., Tanji J. (1974). Gating of motor cortex reflexes by prior instruction. Brain Res. 71, 479–494 10.1016/0006-8993(74)90992-5
    1. Evatt M. L., Wolf S. L., Segal R. L. (1989). Modification of human spinal stretch reflexes: preliminary studies. Neurosci. Lett. 105, 350–355 10.1016/0304-3940(89)90646-0
    1. Feng-Chen K. C., Wolpaw J. R. (1996). Operant conditioning of H-reflex changes synaptic terminals on primate motoneurons. Proc. Natl. Acad. Sci. U S A 93, 9206–9211 10.1073/pnas.93.17.9206
    1. Frigon A., Rossignol S. (2006). Functional plasticity following spinal cord lesions. Prog. Brain Res. 157, 231–260 10.1016/s0079-6123(06)57016-5
    1. Grau J. W. (2013). Learning from the spinal cord: how the study of spinal cord plasticity informs our view of learning. Neurobiol. Learn. Mem. 108C, 155–171 10.1016/j.nlm.2013.08.003
    1. Grey M. J., Ladouceur M., Andersen J. B., Nielsen J. B., Sinkjaer T. (2001). Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. J. Physiol. 534, 925–933 10.1111/j.1469-7793.2001.00925.x
    1. Hall M. (1833). On the reflex function of the medulla oblongata and medulla spinalis. Philos. Trans. R. Soc. Lond. 123, 635–665 10.1098/rstl.1833.0028
    1. Halter J. A., Carp J. S., Wolpaw J. R. (1995). Operantly conditioned motoneuron plasticity: possible role of sodium channels. J. Neurophysiol. 73, 867–871
    1. Hammond P. H. (1956). The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J. Physiol. 132, 17P–18P
    1. Harkema S. J., Hillyer J., Schmidt-Read M., Ardolino E., Sisto S. A., Behrman A. L. (2012). Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Arch. Phys. Med. Rehabil. 93, 1588–1597 10.1016/j.apmr.2012.04.032
    1. Lee R. G., Murphy J. T., Tatton W. G. (1983). Long-latency myotatic reflexes in man: mechanisms, functional significance, and changes in patients with Parkinson’s disease or hemiplegia. Adv. Neurol. 39, 489–508
    1. Lee R. G., Tatton W. G. (1975). Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. Can. J. Neurol. Sci. 2, 285–293
    1. Lovely R. G., Gregor R. J., Roy R. R., Edgerton V. R. (1986). Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92, 421–435 10.1016/0014-4886(86)90094-4
    1. Maegele M., Muller S., Wernig A., Edgerton V. R., Harkema S. J. (2002). Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. J. Neurotrauma 19, 1217–1229 10.1089/08977150260338010
    1. Mendell L. M. (1984). Modifiability of spinal synapses. Physiol. Rev. 64, 260–324
    1. Petruska J. C., Ichiyama R. M., Jindrich D. L., Crown E. D., Tansey K. E., Roy R. R., et al. (2007). Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J. Neurosci. 27, 4460–4471 10.1523/jneurosci.2302-06.2007
    1. Pillai S., Wang Y., Wolpaw J. R., Chen X. Y. (2008). Effects of H-reflex up-conditioning on GABAergic terminals on rat soleus motoneurons. Eur. J. Neurosci. 28, 668–674 10.1111/j.1460-9568.2008.06370.x
    1. Rossignol S., Frigon A., Barriere G., Martinez M., Barthelemy D., Bouyer L., et al. (2011). Chapter 16–spinal plasticity in the recovery of locomotion. Prog. Brain Res. 188, 229–241 10.1016/B978-0-444-53825-3.00021-8
    1. Segal R. L., Wolf S. L. (1994). Operant conditioning of spinal stretch reflexes in patients with spinal cord injuries. Exp. Neurol. 130, 202–213 10.1006/exnr.1994.1199
    1. Sheean G. (2006). Botulinum toxin treatment of adult spasticity: a benefit-risk assessment. Drug Saf. 29, 31–48 10.2165/00002018-200629010-00003
    1. Shurrager P. S., Dykman R. A. (1951). Walking spinal carnivores. J. Comp. Physiol. Psychol. 44, 252–262 10.1037/h0059889
    1. Thomas A. M., Simpson D. M. (2012). Contralateral weakness following botulinum toxin for poststroke spasticity. Muscle Nerve 46, 443–448 10.1002/mus.23492
    1. Thompson A. K., Abel B. M., DeFrancesco E., Lichtman S. W., Pomerantz F. (2011). Operant up-conditioning of the tibialis anterior motor evoked potential in people with incomplete spinal cord injury. International conference of spinal cord medicine and rehabilitation and 37th Annual Meeting of the American Spinal Injury Association, Program No. 71. Washington, D.C.
    1. Thompson A. K., Chen X. Y., Wolpaw J. R. (2009). Acquisition of a simple motor skill: task-dependent adaptation plus long-term change in the human soleus H-reflex. J. Neurosci. 29, 5784–5792 10.1523/jneurosci.4326-08.2009
    1. Thompson A. K., Chen X. Y., Wolpaw J. R. (2013a). Soleus H-reflex operant conditioning changes the H-reflex recruitment curve. Muscle Nerve 47, 539–544 10.1002/mus.23620
    1. Thompson A. K., Pomerantz F. R., Wolpaw J. R. (2013b). Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J. Neurosci. 33, 2365–2375 10.1523/JNEUROSCI.3968-12.2013
    1. Wang Y., Chen Y., Chen L., Wolpaw J. R., Chen X. (2013). Effects of soleus H–reflex conditioning on the motoneuron GABAA receptor, G-protein-activated inwardly-rectifying potassium channel 3.2 and voltage-gated sodium channels. Society for Neuroscience 43rd Annual Meeting, Program No. 645.619. San Diego, CA
    1. Wang Y., Pillai S., Wolpaw J. R., Chen X. Y. (2006). Motor learning changes GABAergic terminals on spinal motoneurons in normal rats. Eur. J. Neurosci. 23, 141–150 10.1111/j.1460-9568.2005.04547.x
    1. Wang Y., Pillai S., Wolpaw J. R., Chen X. Y. (2009). H-reflex down-conditioning greatly increases the number of identifiable GABAergic interneurons in rat ventral horn. Neurosci. Lett. 452, 124–129 10.1016/j.neulet.2009.01.054
    1. Ward A. B. (2008). Spasticity treatment with botulinum toxins. J. Neural Transm. 115, 607–616 10.1007/s00702-007-0833-2
    1. Wernig A., Müller S. (1992). Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 30, 229–238 10.1038/sc.1992.61
    1. Wolf S. L., Segal R. L. (1996). Reducing human biceps brachii spinal stretch reflex magnitude. J. Neurophysiol. 75, 1637–1646
    1. Wolpaw J. R. (1982). Change in short-latency response to limb displacement in primates. Fed. Proc. 41, 2156–2159
    1. Wolpaw J. R. (1987). Operant conditioning of primate spinal reflexes: the H-reflex. J. Neurophysiol. 57, 443–459
    1. Wolpaw J. R. (1997). The complex structure of a simple memory. Trends Neurosci. 20, 588–594 10.1016/s0166-2236(97)01133-8
    1. Wolpaw J. R. (2010). What can the spinal cord teach us about learning and memory? Neuroscientist 16, 532–549 10.1177/1073858410368314
    1. Wolpaw J. R., Braitman D. J., Seegal R. F. (1983a). Adaptive plasticity in primate spinal stretch reflex: initial development. J. Neurophysiol. 50, 1296–1311
    1. Wolpaw J. R., Carp J. S. (1993). Adaptive plasticity in spinal cord. Adv. Neurol. 59, 163–174
    1. Wolpaw J. R., Chen X. Y. (2001). Operant conditioning of rat H-reflex: effects on mean latency and duration. Exp. Brain Res. 136, 274–279 10.1007/s002210000609
    1. Wolpaw J. R., Chen X. Y. (2006). The cerebellum in maintenance of a motor skill: a hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learn. Mem. 13, 208–215 10.1101/lm.92706
    1. Wolpaw J. R., Herchenroder P. A. (1990). Operant conditioning of H-reflex in freely moving monkeys. J. Neurosci. Methods 31, 145–152 10.1016/0165-0270(90)90159-d
    1. Wolpaw J. R., Kieffer V. A., Seegal R. F., Braitman D. J., Sanders M. G. (1983b). Adaptive plasticity in the spinal stretch reflex. Brain Res. 267, 196–200 10.1016/0006-8993(83)91059-4
    1. Wolpaw J. R., Lee C. L. (1989). Memory traces in primate spinal cord produced by operant conditioning of H-reflex. J. Neurophysiol. 61, 563–572
    1. Wolpaw J. R., Maniccia D. M., Elia T. (1994). Operant conditioning of primate H-reflex: phases of development. Neurosci. Lett. 170, 203–207 10.1016/0304-3940(94)90319-0
    1. Wolpaw J. R., O’Keefe J. A. (1984). Adaptive plasticity in the primate spinal stretch reflex: evidence for a two-phase process. J. Neurosci. 4, 2718–2724
    1. Wolpaw J. R., Seegal R. F., O’Keefe J. A. (1983c). Adaptive plasticity in primate spinal stretch reflex: behavior of synergist and antagonist muscles. J. Neurophysiol. 50, 1312–1319
    1. Wolpaw J. R., Tennissen A. M. (2001). Activity-dependent spinal cord plasticity in health and disease. Annu. Rev. Neurosci. 24, 807–843 10.1146/annurev.neuro.24.1.807
    1. Zehr E. P. (2006). Training-induced adaptive plasticity in human somatosensory reflex pathways. J. Appl. Physiol. (1985) 101, 1783–1794 10.1152/japplphysiol.00540.2006

Source: PubMed

Подписаться