A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function

Andrew C Smith, Maria Knikou, Andrew C Smith, Maria Knikou

Abstract

Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI.

Figures

Figure 1
Figure 1
Modulation of neuronal activity while walking in uninjured humans. (a, b) Soleus H-reflexes and soleus motor evoked potentials (MEPs) amplitude at each bin of the step cycle while stepping on a motorized treadmill for single subjects (a) and for a group of healthy subjects (b). (c, d) Short-latency tibialis anterior (TA) flexor reflexes and TA MEPs amplitude at each bin of the step cycle while stepping on a motorized treadmill for single subjects (c) and for a group of healthy subjects (d). For the grouped data, for each bin of the step cycle, the soleus H-reflex was normalized to the maximal M-wave evoked 60–80 ms after the test H-reflex, and the short-latency TA flexor reflexes and soleus/TA MEPs were normalized to the maximum homonymous locomotor EMG having subtracted the control EMG (EMG without stimulation) at identical time windows and bins. Each step was divided into 16 equal bins based on the signal from the right foot switch. Bin 1 corresponds to heel contact. Bins 8, 9, and 16 correspond approximately to stance-to-swing transition, swing initiation, and swing-to-stance transition, respectively. Vertical dotted lines designate the stance-to-swing transition phase. Data adopted and modified from [2, 16, 21, 22].
Figure 2
Figure 2
Functional reorganization of homosynaptic depression after locomotor training in SCI. (a) Schematic diagram of the soleus H-reflex homosynaptic depression exerted at Ia-motoneuron synapse with repetitive activation of Ia afferents. (b). Nonrectified waveform averages of soleus H-reflexes recorded at different stimulation frequencies from one AIS B patient before and after locomotor training for both legs. The soleus H-reflex amplitude exhibited a strong stimulation frequency-dependent depression after locomotor training. Data adopted and modified from [72].
Figure 3
Figure 3
Functional reorganization of presynaptic inhibition of soleus Ia afferents after locomotor training in SCI. (a) Schematic diagram of the neuronal pathway of presynaptic inhibition of soleus Ia afferents. In this paradigm, presynaptic inhibition of soleus Ia afferents is induced by a conditioning afferent volley following common peroneal nerve stimulation at long conditioning-test (C-T) intervals. (b) Mean amplitude of the conditioned soleus H-reflex as a percentage of the unconditioned H-reflex recorded at each C-T interval tested before and after locomotor training from the right leg, grouped per AIS, in the seated position. p < 0.05 indicate statistically significant differences of the conditioned H-reflexes recorded before and after locomotor training. Data adopted and modified from [72].
Figure 4
Figure 4
Functional reorganization of reciprocal Ia inhibition after locomotor training in SCI. (a) Schematic diagram of the neuronal pathway of reciprocal Ia inhibition mediated by a conditioning afferent volley induced by stimulation of the ipsilateral common peroneal nerve at short conditioning-test (C-T) intervals. (b) Mean amplitude of the conditioned soleus H-reflex as a percentage of the unconditioned H-reflex recorded at each C-T interval tested before and after locomotor training from the right leg, grouped per AIS, in the seated position. p < 0.05 indicate statistically significant differences of the conditioned H-reflexes recorded before and after locomotor training. Data adopted and modified from [90].
Figure 5
Figure 5
Functional reorganization of nonreciprocal Ib inhibition after locomotor training in SCI. (a) Schematic diagram of the neuronal pathway of nonreciprocal Ib inhibition mediated by a conditioning afferent volley induced by stimulation of the ipsilateral medialis gastrocnemius nerve at short conditioning-test (C-T) intervals. The facilitatory locomotor Ib pathway is not indicated. (b) Mean amplitude of the conditioned soleus H-reflex as a percentage of the unconditioned H-reflex recorded at each C-T interval tested before and after locomotor training from the right leg, grouped per AIS, in the seated position. p < 0.05 indicate statistically significant differences of the conditioned H-reflexes recorded before and after locomotor training. Data adopted and modified from [90].
Figure 6
Figure 6
Motor activity after locomotor training in incomplete and complete SCI. Nonrectified electromyographic (EMG) activity from 10 consecutive steps of medialis gastrocnemius (MG), tibialis anterior (TA), and peroneus longus (PL) muscles from the left legs in one motor incomplete SCI subject (AIS D) and in one motor complete SCI subject (AIS B) during assisted stepping after locomotor training. Note in subject R014 that MG and PL occur in a reciprocal pattern with the TA, but distinctive EMG bursts are absent in subject R06.

References

    1. Knikou M. Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord. Spinal Cord. 2007;45(1):69–77. doi: 10.1038/sj.sc.3101917.
    1. Knikou M., Angeli C. A., Ferreira C. K., Harkema S. J. Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Experimental Brain Research. 2009;193(3):397–407. doi: 10.1007/s00221-008-1636-x.
    1. Arvanian V. L., Schnell L., Lou L., et al. Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Experimental Neurology. 2009;216(2):471–480. doi: 10.1016/j.expneurol.2009.01.004.
    1. Barthélemy D., Willerslev-Olsen M., Lundell H., et al. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. Journal of Neurophysiology. 2010;104(2):1167–1176. doi: 10.1152/jn.00382.2010.
    1. Tansey K. E., McKay W. B., Kakulas B. A. Restorative neurology: consideration of the new anatomy and physiology of the injured nervous system. Clinical Neurology and Neurosurgery. 2012;114(5):436–440. doi: 10.1016/j.clineuro.2012.01.010.
    1. Brown T. The intrinsic factors in the act of progression in the mammal. Procceedings of the Royal Society Biology. 1911;84(572):308–319.
    1. Sherrington C. S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. The Journal of Physiology. 1910;40(1-2):28–121. doi: 10.1113/jphysiol.1910.sp001362.
    1. Sherrington C. S. Further observations on the production of reflex stepping by combination of reflex excitation with reflex inhibition. The Journal of Physiology. 1913;47(3):196–214. doi: 10.1113/jphysiol.1913.sp001620.
    1. Rybak I. A., Dougherty K. J., Shevtsova N. A. Organization of the mammalian locomotor CPG: review of computational model and circuit architectures based on genetically identified spinal interneurons. eNeuro. 2015;2(5) doi: 10.1523/eneuro.0069-15.2015.
    1. Shevtsova N. A., Talpalar A. E., Markin S. N., Harris-Warrick R. M., Kiehn O., Rybak I. A. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: insights from computational modelling. The Journal of Physiology. 2015;593(11):2403–2426. doi: 10.1113/jp270121.
    1. Rossignol S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006;361(1473):1647–1671. doi: 10.1098/rstb.2006.1889.
    1. Barbeau H., Wainberg M., Finch L. Description and application of a system for locomotor rehabilitation. Medical and Biological Engineering and Computing. 1987;25(3):341–344. doi: 10.1007/bf02447435.
    1. Dietz V. Body weight supported gait training: from laboratory to clinical setting. Brain Research Bulletin. 2009;78(1):1–6. doi: 10.1016/j.brainresbull.2008.09.009.
    1. Colombo G., Wirz M., Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001;39(5):252–255. doi: 10.1038/sj.sc.3101154.
    1. Knikou M. The H-reflex as a probe: pathways and pitfalls. Journal of Neuroscience Methods. 2008;171(1):1–12. doi: 10.1016/j.jneumeth.2008.02.012.
    1. Knikou M., Hajela N., Mummidisetty C. K. Corticospinal excitability during walking in humans with absent and partial body weight support. Clinical Neurophysiology. 2013;124(12):2431–2438. doi: 10.1016/j.clinph.2013.06.004.
    1. Duysens J., Tax A. A. M., Trippel M., Dietz V. Phase-dependent reversal of reflexly induced movements during human gait. Experimental Brain Research. 1992;90(2):404–414. doi: 10.1007/BF00227255.
    1. Knikou M., Angeli C. A., Ferreira C. K., Harkema S. J. Soleus H-reflex gain, threshold, and amplitude as function of body posture and load in spinal cord intact and injured subjects. International Journal of Neuroscience. 2009;119(11):2056–2073. doi: 10.1080/00207450903139747.
    1. Simonsen E. B. Contributions to the understanding of gait control. Danish Medical Journal. 2014;61(4)B4823
    1. Schubert M., Curt A., Jensen L., Dietz V. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Experimental Brain Research. 1997;115(2):234–246. doi: 10.1007/pl00005693.
    1. Smith A. C., Mummidisetty C. K., Rymer W. Z., Knikou M. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. Journal of Neurophysiology. 2014;112(9):2164–2175. doi: 10.1152/jn.00308.2014.
    1. Knikou M., Hajela N., Mummidisetty C. K., Xiao M., Smith A. C. Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clinical Neurophysiology. 2011;122(7):1396–1404. doi: 10.1016/j.clinph.2010.12.044.
    1. Yang J. F., Whelan P. J. Neural mechanisms that contribute to cyclical modulation of the soleus H-reflex in walking in humans. Experimental Brain Research. 1993;95(3):547–556. doi: 10.1007/BF00227148.
    1. Gossard J.-P. Control of transmission in muscle group IA afferents during fictive locomotion in the cat. Journal of Neurophysiology. 1996;76(6):4104–4112.
    1. Ménard A., Leblond H., Gossard J.-P. Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat. Journal of Neurophysiology. 2002;88(1):163–171.
    1. Gosgnach S., Quevedo J., Fedirchuk B., McCrea D. A. Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion. The Journal of Physiology. 2000;526(3):639–652. doi: 10.1111/j.1469-7793.2000.00639.x.
    1. Dueñas S. H., Rudomin P. Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat. Experimental Brain Research. 1988;70(1):15–25. doi: 10.1007/BF00271842.
    1. Morin C., Katz R., Mazieres L., Pierrot-Deseilligny E. Comparison of soleus H reflex facilitation at the onset of soleus contractions produced voluntarily and during the stance phase of human gait. Neuroscience Letters. 1982;33(1):47–53. doi: 10.1016/0304-3940(82)90128-8.
    1. Faist M., Dietz V., Pierrot-Deseilligny E. Modulation, probably presynaptic in origin, of monosynaptic Ia excitation during human gait. Experimental Brain Research. 1996;109(3):441–449.
    1. Angel M. J., Jankowska E., McCrea D. A. Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. The Journal of Physiology. 2005;563(2):597–610. doi: 10.1113/jphysiol.2004.076034.
    1. Faist M., Hoefer C., Hodapp M., Dietz V., Berger W., Duysens J. In humans Ib facilitation depends on locomotion while suppression of Ib inhibition requires loading. Brain Research. 2006;1076(1):87–92. doi: 10.1016/j.brainres.2005.12.069.
    1. Ethier C., Imbeault M.-A., Ung V., Capaday C. On the soleus H-reflex modulation pattern during walking. Experimental Brain Research. 2003;151(3):420–425. doi: 10.1007/s00221-003-1532-3.
    1. Enríquez-Denton M., Nielsen J., Perreault M.-C., Morita H., Petersen N., Hultborn H. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat. The Journal of Physiology. 2000;526(3):623–637. doi: 10.1111/j.1469-7793.2000.t01-1-00623.x.
    1. Petersen N., Christensen L. O. D., Nielsen J. The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. The Journal of Physiology. 1998;513(2):599–610. doi: 10.1111/j.1469-7793.1998.599bb.x.
    1. Kudina L., Ashby P., Downes L. Effects of cortical stimulation on reciprocal inhibition in humans. Experimental Brain Research. 1993;94(3):533–538. doi: 10.1007/BF00230211.
    1. Hanna-Boutros B., Sangari S., Giboin L.-S., et al. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking. Physiological Reports. 2015;3(2) doi: 10.14814/phy2.12276.e12276
    1. Meunier S., Pierrot-Deseilligny E. Cortical control of presynaptic inhibition of Ia afferents in humans. Experimental Brain Research. 1998;119(4):415–426. doi: 10.1007/s002210050357.
    1. Ziemann U., Lönnecker S., Steinhoff B. J., Paulus W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Annals of Neurology. 1996;40(3):367–378. doi: 10.1002/ana.410400306.
    1. Ito T., Tsubahara A., Shinkoda K., Yoshimura Y., Kobara K., Osaka H. Excitability changes in intracortical neural circuits induced by differentially controlled walking patterns. PLoS ONE. 2015;10(2) doi: 10.1371/journal.pone.0117931.e0117931
    1. Eccles J. C., Kostyuk P. G., Schmidt R. F. Presynaptic inhibition of the central actions of flexor reflex afferents. The Journal of Physiology. 1962;161:258–281. doi: 10.1113/jphysiol.1962.sp006885.
    1. Lovely R. G., Gregor R. J., Roy R. R., Edgerton V. R. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Experimental Neurology. 1986;92(2):421–435. doi: 10.1016/0014-4886(86)90094-4.
    1. de Leon R. D., Tamaki H., Hodgson J. A., Roy R. R., Edgerton V. R. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. Journal of Neurophysiology. 1999;82(1):359–369.
    1. Dietz V., Colombo G., Jensen L. Locomotor activity in spinal man. The Lancet. 1994;344(8932):1260–1263. doi: 10.1016/S0140-6736(94)90751-X.
    1. Dietz V., Wirz M., Curt A., Colombo G. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord. 1998;36(6):380–390. doi: 10.1038/sj.sc.3100590.
    1. Wernig A., Muller S., Nanassy A., Cagol E. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. European Journal of Neuroscience. 1995;7(4):823–829. doi: 10.1111/j.1460-9568.1995.tb00686.x.
    1. Field-Fote E. C., Lindley S. D., Sherman A. L. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. Journal of Neurologic Physical Therapy. 2005;29(3):127–137. doi: 10.1097/01.npt.0000282245.31158.09.
    1. Dobkin B., Apple D., Barbeau H., et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66(4):484–493. doi: 10.1212/01.wnl.0000202600.72018.39.
    1. Wu M., Landry J. M., Schmit B. D., Hornby T. G., Yen S.-C. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Archives of Physical Medicine and Rehabilitation. 2012;93(5):782–789. doi: 10.1016/j.apmr.2011.12.018.
    1. Harkema S. J., Schmidt-Read M., Lorenz D. J., Edgerton V. R., Behrman A. L. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Archives of Physical Medicine and Rehabilitation. 2012;93(9):1508–1517. doi: 10.1016/j.apmr.2011.01.024.
    1. Ditor D. S., Kamath M. V., MacDonald M. J., Bugaresti J., McCartney N., Hicks A. L. Effects of body weight-supported treadmill training on heart rate variability and blood pressure variability in individuals with spinal cord injury. Journal of Applied Physiology. 2005;98(4):1519–1525. doi: 10.1152/japplphysiol.01004.2004.
    1. Terson de Paleville D., McKay W., Aslan S., Folz R., Sayenko D., Ovechkin A. Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respiratory Physiology and Neurobiology. 2013;189(3):491–497. doi: 10.1016/j.resp.2013.08.018.
    1. Turiel M., Sitia S., Cicala S., et al. Robotic treadmill training improves cardiovascular function in spinal cord injury patients. International Journal of Cardiology. 2011;149(3):323–329. doi: 10.1016/j.ijcard.2010.02.010.
    1. Yang J. F., Fung J., Edamura M., Blunt R., Stein R. B., Barbeau H. H-reflex modulation during walking in spastic paretic subjects. Canadian Journal of Neurological Sciences. 1991;18(4):443–452.
    1. Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Experimental Brain Research. 2013;228(3):279–296. doi: 10.1007/s00221-013-3560-y.
    1. Roby-Brami A., Bussel B. Long-latency spinal reflex in man after flexor reflex afferent stimulation. Brain. 1987;110(3):707–725. doi: 10.1093/brain/110.3.707.
    1. Knikou M., Conway B. A. Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury. Spinal Cord. 2005;43(11):640–648. doi: 10.1038/sj.sc.3101772.
    1. Conway B. A., Knikou M. The action of plantar pressure on flexion reflex pathways in the isolated human spinal cord. Clinical Neurophysiology. 2008;119(4):892–896. doi: 10.1016/j.clinph.2007.12.015.
    1. Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clinical Neurophysiology. 2010;121(10):1655–1668. doi: 10.1016/j.clinph.2010.01.039.
    1. Shapiro S. Neurotransmission by neurons that use serotonin, noradrenaline, glutamate, glycine, and γ-aminobutyric acid in the normal and injured spinal cord. Neurosurgery. 1997;40(1):168–177. doi: 10.1097/00006123-199701000-00037.
    1. Kuno M. Quantal components of excitatory synaptic potentials in spinal motoneurones. The Journal of Physiology. 1964;175(1):81–99. doi: 10.1113/jphysiol.1964.sp007504.
    1. Hultborn H., Illert M., Nielsen J., Paul A., Ballegaard M., Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Experimental Brain Research. 1996;108(3):450–462.
    1. Kohn A. F., Floeter M. K., Hallett M. Presynaptic inhibition compared with homosynaptic depression as an explanation for soleus H-reflex depression in humans. Experimental Brain Research. 1997;116(2):375–380. doi: 10.1007/PL00005765.
    1. Brody D. L., Yue D. T. Release-independent short-term synaptic depression in cultured hippocampal neurons. Journal of Neuroscience. 2000;20(7):2480–2494.
    1. Chen G., Harata N. C., Tsien R. W. Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(4):1063–1068. doi: 10.1073/pnas.0307149101.
    1. Hsu S.-F., Augustine G. J., Jackson M. B. Adaptation of Ca2+-triggered exocytosis in presynaptic terminals. Neuron. 1996;17(3):501–512. doi: 10.1016/s0896-6273(00)80182-8.
    1. Calancie B., Broton J. G., Klose K. J., Traad M., Difini J., Ram Ayyar D. Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man. Electroencephalography and Clinical Neurophysiology. 1993;89(3):177–186. doi: 10.1016/0168-5597(93)90131-8.
    1. Field-Fote E. C., Brown K. M., Lindley S. D. Influence of posture and stimulus parameters on post-activation depression of the soleus H-reflex in individuals with chronic spinal cord injury. Neuroscience Letters. 2006;410(1):37–41. doi: 10.1016/j.neulet.2006.09.058.
    1. Grey M. J., Klinge K., Crone C., et al. Post-activation depression of Soleus stretch reflexes in healthy and spastic humans. Experimental Brain Research. 2008;185(2):189–197. doi: 10.1007/s00221-007-1142-6.
    1. Reese N. B., Skinner R. D., Mitchell D., et al. Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats. Spinal Cord. 2006;44(1):28–34. doi: 10.1038/sj.sc.3101810.
    1. Trimble M. H., Kukulka C. G., Behrman A. L. The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: comparison of a spinal cord injured man to normal subjects. Neuroscience Letters. 1998;246(3):186–188. doi: 10.1016/s0304-3940(98)00259-6.
    1. Kiser T. S., Reese N. B., Maresh T., et al. Use of a motorized bicycle exercise trainer to normalize frequency-dependent habituation of the H-reflex in spinal cord injury. Journal of Spinal Cord Medicine. 2005;28(3):241–245.
    1. Knikou M., Mummidisetty C. K. Locomotor training improves premotoneuronal control after chronic spinal cord injury. Journal of Neurophysiology. 2014;111(11):2264–2275. doi: 10.1152/jn.00871.2013.
    1. Frank K., Fuortes M. Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Federal Proceedings. 1957;16:39–40.
    1. Eccles J. C. Presynaptice inhibition in the spinal cord. Progress in Brain Research. 1964;12:65–91. doi: 10.1016/s0079-6123(08)60618-4.
    1. Rudomin P., Schmidt R. F. Presynaptic inhibition in the vertebrate spinal cord revisited. Experimental Brain Research. 1999;129(1):1–37. doi: 10.1007/s002210050933.
    1. Côté M.-P., Ménard A., Gossard J.-P. Spinal cats on the treadmill: changes in load pathways. The Journal of Neuroscience. 2003;23(7):2789–2796.
    1. Mummidisetty C. K., Smith A. C., Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clinical Neurophysiology. 2013;124(3):557–564. doi: 10.1016/j.clinph.2012.09.007.
    1. Dietz V., Faist M., Pierrot-Deseilligny E. Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Experimental Brain Research. 1990;79(1):221–224. doi: 10.1007/BF00228893.
    1. Hultborn H., Meunier S., Morin C., Pierrot-Deseilligny E. Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat. The Journal of Physiology. 1987;389:729–756. doi: 10.1113/jphysiol.1987.sp016680.
    1. Faist M., Mazevet D., Dietz V., Pierrot-Deseilligny E. A quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics. Brain. 1994;117:1449–1455. doi: 10.1093/brain/117.6.1449.
    1. Aymard C., Katz R., Lafitte C., et al. Presynaptic inhibition and homosynaptic depression: a comparison between lower and upper limbs in normal human subjects and patients with hemiplegia. Brain. 2000;123(8):1688–1702. doi: 10.1093/brain/123.8.1688.
    1. Pierrot-Deseilligny E., Burke D. Spinal and Corticospinal Mechanisms of Movement. New York, NY, USA: Cambridge University Press; 2012.
    1. Lloyd D. P. C. Neuron patterns controlling transmission of ipsilateral hind limb reflexes in cat. Journal of Neurophysiology. 1943;6(4):293–315.
    1. Lloyd D. Facilitation and inhibition of spinal motoneurones. Journal of Neurophysiology. 1946;9:317–326.
    1. Lloyd D. A direct central inhibitory action of dromically conducted impulses. Journal of Neurophysiology. 1941;4:184–190.
    1. Hultborn H. Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneurones. Acta Physiologica Scandinavica. 1972;85:1–42.
    1. Sonner P. M., Ladle D. R. Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord. Journal of Neurophysiology. 2013;109(8):2118–2128. doi: 10.1152/jn.00783.2012.
    1. Mc Donough S. M., Clowry G. J., Miller S., Eyre J. A. Reciprocal and Renshaw (recurrent) inhibition are functional in man at birth. Brain Research. 2001;899(1-2):66–81. doi: 10.1016/s0006-8993(01)02151-5.
    1. Wang Z., Li L., Goulding M., Frank E. Early postnatal development of reciprocal Ia inhibition in the murine spinal cord. Journal of Neurophysiology. 2008;100(1):185–196. doi: 10.1152/jn.90354.2008.
    1. Knikou M., Smith A. C., Mummidisetty C. K. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. Journal of Neurophysiology. 2015;113(7):2447–2460. doi: 10.1152/jn.00872.2014.
    1. Eccles R. M., Lundberg A. Supraspinal control of interneurones mediating spinal reflexes. Journal of Physiology. 1959;147(3):565–584.
    1. Lindström S. Recurrent control from motor axon collaterals of Ia inhibitory pathways in the spinal cord of the cat. Acta Physiologica Scandinavica Supplement. 1973;392:1–43.
    1. Pratt C. A., Jordan L. M. Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. Journal of Neurophysiology. 1987;57(1):56–71.
    1. Degtyarenko A. M., Simon E. S., Burke R. E. Differential modulation of disynaptic cutaneous inhibition and excitation in ankle flexor motoneurons during fictive locomotion. Journal of Neurophysiology. 1996;76(5):2972–2985.
    1. Geertsen S. S., Stecina K., Meehan C. F., Nielsen J. B., Hultborn H. Reciprocal Ia inhibition contributes to motoneuronal hyperpolarisation during the inactive phase of locomotion and scratching in the cat. The Journal of Physiology. 2011;589(1):119–134. doi: 10.1113/jphysiol.2010.199125.
    1. Feldman A. G., Orlovsky G. N. Activity of interneurons mediating reciprocal 1a inhibition during locomotion. Brain Research. 1975;84(2):181–194. doi: 10.1016/0006-8993(75)90974-9.
    1. Crone C., Nielsen J., Petersen N., Ballegaard M., Hultborn H. Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain. 1994;117(5):1161–1168. doi: 10.1093/brain/117.5.1161.
    1. Crone C., Nielsen J. Central control of disynaptic reciprocal inhibition in humans. Acta Physiologica Scandinavica. 1994;152(4):351–363. doi: 10.1111/j.1748-1716.1994.tb09817.x.
    1. Boorman G. I., Lee R. G., Becker W. J., Windhorst U. R. Impaired ‘natural reciprocal inhibition’ in patients with spasticity due to incomplete spinal cord injury. Electroencephalography and Clinical Neurophysiology. 1996;101(2):84–92. doi: 10.1016/0924-980x(95)00262-j.
    1. Morita H., Crone C., Christenhuis D., Petersen N. T., Nielsen J. B. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain. 2001;124(4):826–837. doi: 10.1093/brain/124.4.826.
    1. Knikou M., Mummidisetty C. K. Reduced reciprocal inhibition during assisted stepping in human spinal cord injury. Experimental Neurology. 2011;231(1):104–112. doi: 10.1016/j.expneurol.2011.05.021.
    1. Okuma Y., Mizuno Y., Lee R. G. Reciprocal Ia inhibition in patients with asymmetric spinal spasticity. Clinical Neurophysiology. 2002;113(2):292–297. doi: 10.1016/S1388-2457(02)00004-4.
    1. de Leon R. D., See P. A., Chow C. H. T. Differential effects of low versus high amounts of weight supported treadmill training in spinally transected rats. Journal of Neurotrauma. 2011;28(6):1021–1033. doi: 10.1089/neu.2010.1699.
    1. Eccles J. C., Eccles R. M., Lundberg A. Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. The Journal of Physiology. 1957;138(2):227–252. doi: 10.1113/jphysiol.1957.sp005849.
    1. Jankowska E. Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology. 1992;38(4):335–378. doi: 10.1016/0301-0082(92)90024-9.
    1. Jankowska E., Lundberg A. Interneurones in the spinal cord. Trends in Neurosciences. 1981;4:230–233. doi: 10.1016/0166-2236(81)90072-2.
    1. Gossard J.-P., Brownstone R. M., Barajon I., Hultborn H. Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Experimental Brain Research. 1994;98(2):213–228. doi: 10.1007/BF00228410.
    1. Quevedo J., Fedirchuk B., Gosgnach S., McCrea D. A. Group I disynaptic excitation of cat hindlimb flexor and bifunctional motoneurones during fictive locomotion. The Journal of Physiology. 2000;525(2):549–564. doi: 10.1111/j.1469-7793.2000.t01-1-00549.x.
    1. Duysens J., Pearson K. G. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Research. 1980;187(2):321–332. doi: 10.1016/0006-8993(80)90206-1.
    1. Conway B. A., Hultborn H., Kiehn O. Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental Brain Research. 1987;68(3):643–656. doi: 10.1007/BF00249807.
    1. Guertin P., Angel M. J., Perreault M.-C., McCrea D. A. Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. Journal of Physiology. 1995;487(1):197–209. doi: 10.1113/jphysiol.1995.sp020871.
    1. Whelan P. J., Hiebert G. W., Pearson K. G. Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Experimental Brain Research. 1995;103(1):20–30. doi: 10.1007/BF00241961.
    1. Stephens M., Yang J. Short latency, non-reciprocal group I inhibition is reduced during the stance phase of walking in humans. Brain Research. 1996;743(1-2):24–31. doi: 10.1016/s0006-8993(96)00977-8.
    1. Downes L., Ashby P., J Bugaresti Reflex effects from Golgi tendon organ (Ib) afferents are unchanged after spinal cord lesions in humans. Neurology. 1995;45(9):1720–1724. doi: 10.1212/wnl.45.9.1720.
    1. Morita H., Shindo M., Momoi H., Yanagawa S., Ikeda S., Yanagisawa N. Lack of modulation of Ib inhibition during antagonist contraction in spasticity. Neurology. 2006;67(1):52–56. doi: 10.1212/01.wnl.0000223399.59212.f4.
    1. Knikou M. Function of group IB inhibition during assisted stepping in human spinal cord injury. Journal of Clinical Neurophysiology. 2012;29(3):271–277. doi: 10.1097/WNP.0b013e318257c2b7.
    1. McCrea D. A., Shefchyk S. J., Stephens M. J., Pearson K. G. Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat. The Journal of Physiology. 1995;487(2):527–539. doi: 10.1113/jphysiol.1995.sp020897.
    1. Dietz V. Proprioception and locomotor disorders. Nature Reviews Neuroscience. 2002;3(10):781–790. doi: 10.1038/nrn939.
    1. Harvey P. J., Li X., Li Y., Bennett D. J. Endogenous monoamine receptor activation is essential for enabling persistent sodium currents and repetitive firing in rat spinal motoneurons. Journal of Neurophysiology. 2006;96(3):1171–1186. doi: 10.1152/jn.00341.2006.
    1. Harvey P. J., Li X., Li Y., Bennett D. J. 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury. Journal of Neurophysiology. 2006;96(3):1158–1170. doi: 10.1152/jn.01088.2005.
    1. Hounsgaard J., Hultborn H., Jespersen B., Kiehn O. Bistability of α-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. The Journal of Physiology. 1988;405:345–367. doi: 10.1113/jphysiol.1988.sp017336.
    1. Li X., Murray K., Harvey P. J., Ballou E. W., Bennett D. J. Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury. Journal of Neurophysiology. 2007;97(2):1236–1246. doi: 10.1152/jn.00995.2006.
    1. Heckman C. J., Gorassini M. A., Bennett D. J. Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle and Nerve. 2005;31(2):135–156. doi: 10.1002/mus.20261.
    1. Hultborn H., Denton M. E., Wienecke J., Nielsen J. B. Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current. The Journal of Physiology. 2003;552(3):945–952. doi: 10.1113/jphysiol.2003.050971.
    1. Lee R. H., Heckman C. J. Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. The Journal of Neuroscience. 2000;20(17):6734–6740.
    1. Prather J. F., Powers R. K., Cope T. C. Amplification and linear summation of synaptic effects on motoneuron firing rate. Journal of Neurophysiology. 2001;85(1):43–53.
    1. Bui T. V., Grande G., Rose P. K. Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents. Journal of Neurophysiology. 2008;99(2):571–582. doi: 10.1152/jn.00717.2007.
    1. Murray K. C., Nakae A., Stephens M. J., et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nature Medicine. 2010;16(6):694–700. doi: 10.1038/nm.2160.
    1. Bennett D. J., Li Y., Harvey P. J., Gorassini M. Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. Journal of Neurophysiology. 2001;86(4):1972–1982.
    1. Cope T. C., Bodine S. C., Fournier M., Edgerton V. R. Soleus motor units in chronic spinal transected cats: physiological and morphological alterations. Journal of Neurophysiology. 1986;55(6):1202–1220.
    1. Hochman S., McCrea D. A. Effects of chronic spinalization on ankle extensor motoneurons. II. Motoneuron electrical properties. Journal of Neurophysiology. 1994;71(4):1468–1479.
    1. Beaumont E., Houlé J. D., Peterson C. A., Gardiner P. F. Passive exercise and fetal spinal cord transplant both help to restore motoneuronal properties after spinal cord transection in rats. Muscle and Nerve. 2004;29(2):234–242. doi: 10.1002/mus.10539.
    1. Gorassini M. A., Knash M. E., Harvey P. J., Bennett D. J., Yang J. F. Role of motoneurons in the generation of muscle spasms after spinal cord injury. Brain. 2004;127(10):2247–2258. doi: 10.1093/brain/awh243.
    1. Beaumont E., Gardiner P. Effects of daily spontaneous running on the electro-physiological properties of hindlimb motoneurones in rats. The Journal of Physiology. 2002;540(1):129–138. doi: 10.1113/jphysiol.2001.013084.
    1. Beaumont E., Gardiner P. F. Endurance training alters the biophysical properties of hindlimb motoneurons in rats. Muscle and Nerve. 2003;27(2):228–236. doi: 10.1002/mus.10308.
    1. Beaumont E., Kaloustian S., Rousseau G., Cormery B. Training improves the electrophysiological properties of lumbar neurons and locomotion after thoracic spinal cord injury in rats. Neuroscience Research. 2008;62(3):147–154. doi: 10.1016/j.neures.2008.07.003.
    1. Gazula V.-R., Roberts M., Luzzio C., Jawad A. F., Kalb R. G. Effects of limb exercise after spinal cord injury on motor neuron dendrite stucture. Journal of Comparative Neurology. 2004;476(2):130–145. doi: 10.1002/cne.20204.
    1. Petruska J. C., Ichiyama R. M., Crown E. D., et al. Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. The Journal of Neuroscience. 2007;27(16):4460–4471. doi: 10.1523/jneurosci.2302-06.2007.
    1. Ilha J., Centenaro L. A., Broetto Cunha N., et al. The beneficial effects of treadmill step training on activity-dependent synaptic and cellular plasticity markers after complete spinal cord injury. Neurochemical Research. 2011;36(6):1046–1055. doi: 10.1007/s11064-011-0446-x.
    1. Flynn J. R., Dunn L. R., Galea M. P., Callister R., Callister R. J., Rank M. M. Exercise training after spinal cord injury selectively alters synaptic properties in neurons in adult mouse spinal cord. Journal of Neurotrauma. 2013;30(10):891–896. doi: 10.1089/neu.2012.2714.
    1. Smith A. C., Rymer W. Z., Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Experimental Brain Research. 2015;233(1):89–103. doi: 10.1007/s00221-014-4094-7.
    1. Capaday C., Stein R. B. Difference in the amplitude of the human soleus H reflex during walking and running. The Journal of Physiology. 1987;392:513–522. doi: 10.1113/jphysiol.1987.sp016794.
    1. Kratz R., Meunier S., Pierrot-Deseilligny E. Changes in presynaptic inhibition of Ia fibres in man while standing. Brain. 1988;111(2):417–437. doi: 10.1093/brain/111.2.417.
    1. Nielson J., Kagamihara Y. The regulation of disynaptic reciprocal Ia inhibition during co-contraction of antagonistic muscles in man. The Journal of Physiology. 1992;456:373–391. doi: 10.1113/jphysiol.1992.sp019341.
    1. Gorassini M. A., Norton J. A., Nevett-Duchcherer J., Roy F. D., Yang J. F. Changes in locomotor muscle activity after treadmill training in subjects with incomplete spinal cord injury. Journal of Neurophysiology. 2009;101(2):969–979. doi: 10.1152/jn.91131.2008.
    1. Shin J. C., Kim J. Y., Park H. K., Kim N. Y. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Annals of Rehabilitation Medicine. 2014;38(6):719–725. doi: 10.5535/arm.2014.38.6.719.
    1. Barbeau H., Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Research. 1987;412(1):84–95. doi: 10.1016/0006-8993(87)91442-9.
    1. Dobkin B., Barbeau H., Deforge D., et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabilitation and Neural Repair. 2007;21(1):25–35. doi: 10.1177/1545968306295556.
    1. Dunlop S. A. Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends in Neurosciences. 2008;31(8):410–418. doi: 10.1016/j.tins.2008.05.004.
    1. Raineteau O., Schwab M. E. Plasticity of motor systems after incomplete spinal cord injury. Nature Reviews Neuroscience. 2001;2(4):263–273. doi: 10.1038/35067570.
    1. Rossignol S., Barrière G., Frigon A., et al. Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions. Brain Research Reviews. 2008;57(1):228–240. doi: 10.1016/j.brainresrev.2007.06.019.
    1. Markin S. N., Klishko A. N., Shevtsova N. A., Lemay M. A., Prilutsky B. I., Rybak I. A. Afferent control of locomotor CPG: insights from a simple neuromechanical model. Annals of the New York Academy of Sciences. 2010;1198:21–34. doi: 10.1111/j.1749-6632.2010.05435.x.
    1. Jankowska E., Padel Y., Tanaka R. Disynaptic inhibition of spinal motoneurones from the motor cortex in the monkey. The Journal of Physiology. 1976;258(2):467–487. doi: 10.1113/jphysiol.1976.sp011431.
    1. Lundberg A. Multisensory control of spinal reflex pathways. In: Granit R., Pomeiano O., editors. Reflex Control of Posture and Movement. Amsterdam, The Netherlands: Elsevier; 1979. pp. 11–28.
    1. Fournier E., Karz R., Pierrot-Deseilligny E. Descending control of reflex pathways in the production of voluntary isolated movements in man. Brain Research. 1983;288(1-2):375–377. doi: 10.1016/0006-8993(83)90122-1.
    1. Birinyi A., Viszokay K., Wéber I., Kiehn O., Antal M. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. Journal of Comparative Neurology. 2003;461(4):429–440. doi: 10.1002/cne.10696.
    1. Butt S. J. B., Lebret J. M., Kiehn O. Organization of left-right coordination in the mammalian locomotor network. Brain Research Reviews. 2002;40(1–3):107–117. doi: 10.1016/s0165-0173(02)00194-7.
    1. Butt S. J. B., Kiehn O. Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron. 2003;38(6):953–963. doi: 10.1016/S0896-6273(03)00353-2.
    1. Edgley S. A., Jankowska E., Hammar I. Ipsilateral actions of feline corticospinal tract neurons on limb motoneurons. The Journal of Neuroscience. 2004;24(36):7804–7813. doi: 10.1523/jneurosci.1941-04.2004.
    1. Jankowska E., Edgley S. A. How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist. 2006;12(1):67–79. doi: 10.1177/1073858405283392.
    1. Kiehn O., Quinlan K. A., Restrepo C. E., et al. Excitatory components of the mammalian locomotor CPG. Brain Research Reviews. 2008;57(1):56–63. doi: 10.1016/j.brainresrev.2007.07.002.
    1. Cowley K. C., Zaporozhets E., Joundi R. A., Schmidt B. J. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord. Journal of Neurophysiology. 2009;101(3):1171–1178. doi: 10.1152/jn.91212.2008.
    1. Buchanan J. T., McPherson D. R. The neuronal network for locomotion in the lamprey spinal cord: evidence for the involvement of commissural interneurons. The Journal of Physiology. 1995;89(4–6):221–233. doi: 10.1016/0928-4257(96)83638-2.
    1. Stubbs P. W., Mrachacz-Kersting N. Short-latency crossed inhibitory responses in the human soleus muscle. Journal of Neurophysiology. 2009;102(6):3596–3605. doi: 10.1152/jn.00667.2009.
    1. Stubbs P. W., Nielsen J. F., Sinkjær T., Mrachacz-Kersting N. Phase modulation of the short-latency crossed spinal response in the human soleus muscle. Journal of Neurophysiology. 2011;105(2):503–511. doi: 10.1152/jn.00786.2010.
    1. Stubbs P. W., Nielsen J. F., Sinkjr T., Mrachacz-Kersting N. Crossed spinal soleus muscle communication demonstrated by H-reflex conditioning. Muscle and Nerve. 2011;43(6):845–850. doi: 10.1002/mus.21964.
    1. Stevenson A. J. T., Kamavuako E. N., Geertsen S. S., Farina D., Mrachacz-Kersting N. Short-latency crossed responses in the human biceps femoris muscle. The Journal of Physiology. 2015;593(16):3657–3671. doi: 10.1113/jp270422.
    1. Hanna-Boutros B., Sangari S., Karasu A., Giboin L.-S., Marchand-Pauvert V. Task-related modulation of crossed spinal inhibition between human lower limbs. Journal of Neurophysiology. 2014;111(9):1865–1876. doi: 10.1152/jn.00838.2013.
    1. Stanislaus V., Mummidisetty C. K., Knikou M. Soleus H-reflex graded depression by contralateral hip afferent feedback in humans. Brain Research. 2010;1310:77–86. doi: 10.1016/j.brainres.2009.11.013.
    1. Dubuc R., Cabelguen J.-M., Rossignol S. Rhythmic antidromic discharges of single primary afferents recorded in cut dorsal root filaments during locomotion in the cat. Brain Research. 1985;359(1-2):375–378. doi: 10.1016/0006-8993(85)91455-6.
    1. Gossard J.-P., Cabelguen J.-M., Rossignol S. An intracellular study of muscle primary afferents during fictive locomotion in the cat. Journal of Neurophysiology. 1991;65(4):914–926.
    1. Hochman S., McCrea D. A. Effects of chronic spinalization on ankle extensor motoneurons. I. Composite monosynaptic Ia EPSPs in four motoneuron pools. Journal of Neurophysiology. 1994;71(4):1452–1467.
    1. Côté M.-P., Gossard J.-P. Step training-dependent plasticity in spinal cutaneous pathways. The Journal of Neuroscience. 2004;24(50):11317–11327. doi: 10.1523/jneurosci.1486-04.2004.
    1. Knikou M. Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury. Journal of Neurophysiology. 2010;103(3):1304–1314. doi: 10.1152/jn.00880.2009.
    1. Tillakaratne N. J. K., de Leon R. D., Hoang T. X., Roy R. R., Edgerton V. R., Tobin A. J. Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. Journal of Neuroscience. 2002;22(8):3130–3143.
    1. Sadlaoud K., Tazerart S., Brocard C., et al. Differential plasticity of the GABAergic and glycinergic synaptic transmission to rat lumbar motoneurons after spinal cord injury. The Journal of Neuroscience. 2010;30(9):3358–3369. doi: 10.1523/jneurosci.6310-09.2010.
    1. Windle W. F., Smart J. O., Beers J. J. Residual function after subtotal spinal cord transection in adult cats. Neurology. 1958;8(7):518–521. doi: 10.1212/WNL.8.7.518.
    1. Eidelberg E., Walden J. G., Nguyen L. H. Locomotor control in macaque monkeys. Brain. 1981;104(4):647–663.
    1. Nathan P. W. Effects on movement of surgical incisions into the human spinal cord. Brain. 1994;117(2):337–346. doi: 10.1093/brain/117.2.337.
    1. Bareyre F. M., Kerschensteiner M., Raineteau O., Mettenleiter T. C., Weinmann O., Schwab M. E. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nature Neuroscience. 2004;7(3):269–277. doi: 10.1038/nn1195.
    1. Courtine G., Song B., Roy R. R., et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine. 2008;14(1):69–74. doi: 10.1038/nm1682.
    1. van den Brand R., Heutschi J., Barraud Q., et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012;336(6085):1182–1185. doi: 10.1126/science.1217416.
    1. Rosenzweig E. S., Courtine G., Jindrich D. L., et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nature Neuroscience. 2010;13(12):1505–1510. doi: 10.1038/nn.2691.
    1. Flynn J. R., Graham B. A., Galea M. P., Callister R. J. The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology. 2011;60(5):809–822. doi: 10.1016/j.neuropharm.2011.01.016.
    1. Filli L., Schwab M. E. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regeneration Research. 2015;10(4):509–513. doi: 10.4103/1673-5374.155425.
    1. Vavrek R., Girgis J., Tetzlaff W., Hiebert G. W., Fouad K. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain. 2006;129(6):1534–1545. doi: 10.1093/brain/awl087.
    1. Rank M. M., Flynn J. R., Battistuzzo C. R., Galea M. P., Callister R., Callister R. J. Functional changes in deep dorsal horn interneurons following spinal cord injury are enhanced with different durations of exercise training. The Journal of Physiology. 2015;593(1):331–345. doi: 10.1113/jphysiol.2014.282640.
    1. Nathan P. W., Smith M. C. Fasciculi proprii of the spinal cord in man: review of present knowledge. Brain. 1959;82(4):610–668. doi: 10.1093/brain/82.4.610.
    1. Burke D., Gracies J. M., Mazevet D., Meunier S., Pierrot-Deseilligny E. Non-monosynaptic transmission of the cortical command for voluntary movement in man. The Journal of Physiology. 1994;480(1):191–202. doi: 10.1113/jphysiol.1994.sp020352.
    1. Pierrot-Deseilligny E. Propriospinal transmission of part of the corticospinal excitation in humans. Muscle and Nerve. 2002;26(2):155–172. doi: 10.1002/mus.1240.
    1. Gracies J. M., Meunier S., Pierrot-Deseilligny E. Evidence for corticospinal excitation of presumed propriospinal neurones in man. The Journal of Physiology. 1994;475(3):509–518. doi: 10.1113/jphysiol.1994.sp020089.
    1. Pierrot-Deseilligny E. Transmission of the cortical command for human voluntary movement through cervical propriospinal premotoneurons. Progress in Neurobiology. 1996;48(4-5):489–517. doi: 10.1016/0301-0082(96)00002-0.
    1. Iglesias C., Nielsen J. B., Marchand-Pauvert V. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking. European Journal of Neuroscience. 2008;28(7):1351–1361. doi: 10.1111/j.1460-9568.2008.06414.x.
    1. Scivoletto G., Tamburella F., Laurenza L., Foti C., Ditunno J. F., Molinari M. Validity and reliability of the 10-m walk test and the 6-min walk test in spinal cord injury patients. Spinal Cord. 2011;49(6):736–740. doi: 10.1038/sc.2010.180.
    1. Alcobendas-Maestro M., Esclarín-Ruz A., Casado-López R. M., et al. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabilitation and Neural Repair. 2012;26(9):1058–1063. doi: 10.1177/1545968312448232.
    1. Postans N. J., Hasler J. P., Granat M. H., Maxwell D. J. Functional electric stimulation to augment partial weight-bearing supported treadmill training for patients with acute incomplete spinal cord injury: a pilot study. Archives of Physical Medicine and Rehabilitation. 2004;85(4):604–610. doi: 10.1016/j.apmr.2003.08.083.
    1. Dobkin B., Barbeau H., Deforge D., et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized spinal cord injury locomotor trial. Neurorehabilitation and Neural Repair. 2007;21(1):25–35. doi: 10.1177/1545968306295556.
    1. Field-Fote E. C., Roach K. E. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Physical Therapy. 2011;91(1):48–60. doi: 10.2522/ptj.20090359.
    1. Anwer S., Equebal A., Palekar T. J., Nezamuddin M., Neyaz O., Alghadir A. Effect of locomotor training on motor recovery and walking ability in patients with incomplete spinal cord injury: a case series. Journal of Physical Therapy Science. 2014;26(6):951–953. doi: 10.1589/jpts.26.951.
    1. Manella K. J., Torres J., Field-Fote E. C. Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury. Journal of Rehabilitation Medicine. 2010;42(8):795–798. doi: 10.2340/16501977-0593.

Source: PubMed

Подписаться