Usability Evaluation of a Noninvasive Neutropenia Screening Device (PointCheck) for Patients Undergoing Cancer Chemotherapy: Mixed Methods Observational Study

Ganimete Lamaj, Alberto Pablo-Trinidad, Ian Butterworth, Nolan Bell, Ryan Benasutti, Aurelien Bourquard, Alvaro Sanchez-Ferro, Carlos Castro-Gonzalez, Ana Jiménez-Ubieto, Tycho Baumann, Antonia Rodriguez-Izquierdo, Elizabeth Pottier, Anthony Shelton, Joaquin Martinez-Lopez, John Mark Sloan, Ganimete Lamaj, Alberto Pablo-Trinidad, Ian Butterworth, Nolan Bell, Ryan Benasutti, Aurelien Bourquard, Alvaro Sanchez-Ferro, Carlos Castro-Gonzalez, Ana Jiménez-Ubieto, Tycho Baumann, Antonia Rodriguez-Izquierdo, Elizabeth Pottier, Anthony Shelton, Joaquin Martinez-Lopez, John Mark Sloan

Abstract

Background: Patients with cancer undergoing cytotoxic chemotherapy face an elevated risk of developing serious infection as a consequence of their treatment, which lowers their white blood cell count and, more specifically, their absolute neutrophil count. This condition is known as neutropenia. Neutropenia accompanied by a fever is referred to as febrile neutropenia, a common side effect of chemotherapy with a high mortality rate. The timely detection of severe neutropenia (<500 absolute neutrophil count/μL) is critical in detecting and managing febrile neutropenia. Current methods rely on blood draws, which limit them to clinical settings and do not allow frequent or portable monitoring. In this study, we demonstrated the usability of PointCheck, a noninvasive device for neutropenia screening, in a simulated home environment without clinical supervision. PointCheck automatically performs microscopy through the skin of the finger to image the blood flowing through superficial microcapillaries and enables the remote monitoring of neutropenia status, without requiring venipuncture.

Objective: This study aimed to evaluate the usability of PointCheck, a noninvasive optical technology for screening severe neutropenia, with the goal of identifying potential user interface, functionality, and design issues from the perspective of untrained users.

Methods: We conducted a multicenter study using quantitative and qualitative approaches to evaluate the usability of PointCheck across 154 untrained participants. We used a mixed method approach to gather usability data through user testing observations, a short-answer qualitative questionnaire, and a standardized quantitative System Usability Scale (SUS) survey to assess perceived usability and satisfaction.

Results: Of the 154 participants, we found that 108 (70.1%) scored above 80.8 on the SUS across all sites, with a mean SUS score of 86.1 across all sites. Furthermore, the SUS results indicated that, out of the 151 users who completed the SUS survey, 145 (96%) found that they learned how to use PointCheck very quickly, and 141 (93.4%) felt very confident when using the device.

Conclusions: We have shown that PointCheck, a novel technology for noninvasive, home-based neutropenia detection, can be safely and effectively operated by first-time users. In a simulated home environment, these users found it easy to use, with a mean SUS score of 86.1, indicating an excellent perception of usability and placing this device within the top tenth percentile of systems evaluated for usability by the SUS.

Trial registration: ClinicalTrials.gov NCT04448314; https://ichgcp.net/clinical-trials-registry/NCT04448314 (Hospital Universitario 12 de Octubre registration) and NCT04448301; https://ichgcp.net/clinical-trials-registry/NCT04448301 (Boston Medical Center registration).

Keywords: cancer; chemotherapy; decision support systems; diagnosis; digital health; infection; medical device; patient-centered care; remote monitoring; technology; usability; white blood cell; white blood cells.

Conflict of interest statement

Conflicts of Interest: GL, APT, IB, NB, RB, AB, ASF, and CCG are current employees and holders of stock options in a privately held company, patents, and royalties of Leuko Labs, Inc. IB and CCG have membership on the board of directors or advisory committees of Leuko Labs, Inc. JML received research funding from Roche, Novartis, Incyte, Astellas, and BMS and consulted for Janssen, BMS, Novartis, Incyte, Roche, GSK, and Pfizer. None of these items are related to this work. JMS has membership on the board of directors or advisory committees of Pharmacosmos and Astra Zeneca and received honoraria from Abbvie and Stemline. None of these items are related to this work. All other authors declared no other conflicts of interest.

©Ganimete Lamaj, Alberto Pablo-Trinidad, Ian Butterworth, Nolan Bell, Ryan Benasutti, Aurelien Bourquard, Alvaro Sanchez-Ferro, Carlos Castro-Gonzalez, Ana Jiménez-Ubieto, Tycho Baumann, Antonia Rodriguez-Izquierdo, Elizabeth Pottier, Anthony Shelton, Joaquin Martinez-Lopez, John Mark Sloan. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 09.08.2022.

Figures

Figure 1
Figure 1
The PointCheck device and its main components.
Figure 2
Figure 2
Screenshots of PointCheck’s user interface depicting the user walk-through tutorial in English for taking a measurement and device function via the touch screen interface. Language support for Spanish- and Haitian-speaking populations was implemented to translate the instructions.
Figure 3
Figure 3
One-page quick start guide provided to participants before attempting to take a measurement on their own.
Figure 4
Figure 4
SUS survey responses assessed individually. Percentage values are calculated using available data from a total of 151 participants. SUS surveys were incomplete for 3 participants. SUS: System Usability Scale.

References

    1. Lyman GH, Abella E, Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: a systematic review. Crit Rev Oncol Hematol. 2014 Jun;90(3):190–9. doi: 10.1016/j.critrevonc.2013.12.006.S1040-8428(13)00261-8
    1. Lyman GH. Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Canc Netw. 2009 Jan;7(1):99–108. doi: 10.6004/jnccn.2009.0009.
    1. Isidori A, Cerchione C, Daver N, DiNardo C, Garcia-Manero G, Konopleva M, Jabbour E, Ravandi F, Kadia T, Burguera ADLF, Romano A, Loscocco F, Visani G, Martinelli G, Kantarjian H, Curti A. Immunotherapy in acute myeloid leukemia: where we stand. Front Oncol. 2021;11:656218. doi: 10.3389/fonc.2021.656218. doi: 10.3389/fonc.2021.656218.
    1. Wilson BE, Jacob S, Yap ML, Ferlay J, Bray F, Barton MB. Estimates of global chemotherapy demands and corresponding physician workforce requirements for 2018 and 2040: a population-based study. Lancet Oncol. 2019 Jun;20(6):769–780. doi: 10.1016/S1470-2045(19)30163-9.S1470-2045(19)30163-9
    1. Tai E, Guy GP, Dunbar A, Richardson LC. Cost of cancer-related neutropenia or fever hospitalizations, United States, 2012. J Oncol Pract. 2017 Jun;13(6):e552–e561. doi: 10.1200/JOP.2016.019588.
    1. Wang W, Li E, Campbell K, McBride A, D'Amato S. Economic analysis on adoption of biosimilar granulocyte colony-stimulating factors in patients with nonmyeloid cancer at risk of febrile neutropenia within the oncology care model framework. JCO Oncol Pract. 2021 Aug;17(8):e1139–e1149. doi: 10.1200/OP.20.00994.
    1. Lyman GH, Poniewierski MS, Crawford J, Dale DC, Culakova E. Cost of hospitalization in patients with cancer and febrile neutropenia and impact of comorbid conditions. Blood. 2015 Dec 03;126(23):2089. doi: 10.1182/blood.v126.23.2089.2089.
    1. Kuderer NM, Dale DC, Crawford J, Cosler LE, Lyman GH. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer. 2006 May 15;106(10):2258–66. doi: 10.1002/cncr.21847. doi: 10.1002/cncr.21847.
    1. Trotti Andy, Colevas A Dimitrios, Setser Ann, Rusch Valerie, Jaques David, Budach Volker, Langer Corey, Murphy Barbara, Cumberlin Richard, Coleman C Norman, Rubin Philip. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003 Jul;13(3):176–81. doi: 10.1016/S1053-4296(03)00031-6.S1053-4296(03)00031-6
    1. Lyman GH, Lyman CH, Agboola O. Risk models for predicting chemotherapy-induced neutropenia. Oncologist. 2005;10(6):427–37. doi: 10.1634/theoncologist.10-6-427. 10/6/427
    1. de Naurois J, Novitzky-Basso I, Gill MJ, Marti FM, Cullen MH, Roila F, ESMO Guidelines Working Group Management of febrile neutropenia: ESMO Clinical Practice Guidelines. Ann Oncol. 2010 May;21 Suppl 5:v252–6. doi: 10.1093/annonc/mdq196. S0923-7534(19)39644-9
    1. Kyriacou DN, Jovanovic B, Frankfurt O. Timing of initial antibiotic treatment for febrile neutropenia in the emergency department: the need for evidence-based guidelines. J Natl Compr Canc Netw. 2014 Nov;12(11):1569–73. doi: 10.6004/jnccn.2014.0157.12/11/1569
    1. Seltzer JA, Frankfurt O, Kyriacou DN. Association of an emergency department febrile neutropenia intervention protocol with time to initial antibiotic treatment. Acad Emerg Med. 2022 Jan;29(1):73–82. doi: 10.1111/acem.14335.
    1. Wijeratne DT, Wright K, Gyawali B. Risk-stratifying treatment strategies for febrile neutropenia-tools, tools everywhere, and not a single one that works? JCO Oncol Pract. 2021 Nov;17(11):651–654. doi: 10.1200/OP.21.00148.
    1. Zimmer AJ, Freifeld AG. Optimal management of neutropenic fever in patients with cancer. J Oncol Pract. 2019 Jan;15(1):19–24. doi: 10.1200/JOP.18.00269.
    1. Meza L, Baselga J, Holmes F, Liang B, Breddy J, Pegfilgrastim Study Group Incidence of febrile neutropenia (FN) is directly related to duration of severe neutropenia (DSN) after myelosuppressive chemotherapy. Proceedings of the American Society of Clinical Oncology. Vol 21. 2002;21:255b.
    1. Hartmann LC, Tschetter LK, Habermann TM, Ebbert LP, Johnson PS, Mailliard JA, Levitt R, Suman VJ, Witzig TE, Wieand HS, Miller LL, Moertel CG. Granulocyte colony-stimulating factor in severe chemotherapy-induced afebrile neutropenia. N Engl J Med. 1997 Jun 19;336(25):1776–80. doi: 10.1056/NEJM199706193362502.
    1. Gafter-Gvili A, Fraser A, Paul M, Vidal L, Lawrie TA, van de Wetering MD, Kremer LCM, Leibovici L. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012 Jan 18;1:CD004386. doi: 10.1002/14651858.CD004386.pub3.
    1. Egan G, Robinson PD, Martinez JPD, Alexander S, Ammann RA, Dupuis LL, Fisher BT, Lehrnbecher T, Phillips B, Cabral S, Tomlinson G, Sung L. Efficacy of antibiotic prophylaxis in patients with cancer and hematopoietic stem cell transplantation recipients: a systematic review of randomized trials. Cancer Med. 2019 Aug;8(10):4536–4546. doi: 10.1002/cam4.2395. doi: 10.1002/cam4.2395.
    1. Bachar N, Benbassat D, Brailovsky D, Eshel Y, Glück Dan, Levner D, Levy S, Pecker S, Yurkovsky E, Zait A, Sever C, Kratz A, Brugnara C. An artificial intelligence-assisted diagnostic platform for rapid near-patient hematology. Am J Hematol. 2021 Oct 01;96(10):1264–1274. doi: 10.1002/ajh.26295.
    1. Bond MM, Richards-Kortum RR. Drop-to-drop variation in the cellular components of fingerprick blood: implications for point-of-care diagnostic development. Am J Clin Pathol. 2015 Dec;144(6):885–94. doi: 10.1309/AJCP1L7DKMPCHPEH.144/6/885
    1. Yang ZW, Yang SH, Chen L, Qu J, Zhu J, Tang Z. Comparison of blood counts in venous, fingertip and arterial blood and their measurement variation. Clin Lab Haematol. 2001 Jun;23(3):155–9. doi: 10.1046/j.1365-2257.2001.00388.x.clh388
    1. Daae LN, Halvorsen S, Mathisen PM, Mironska K. A comparison between haematological parameters in 'capillary' and venous blood from healthy adults. Scand J Clin Lab Invest. 1988 Nov;48(7):723–6. doi: 10.1080/00365518809085796.
    1. Hollis VS, Holloway JA, Harris S, Spencer D, van Berkel C, Morgan H. Comparison of venous and capillary differential leukocyte counts using a standard hematology analyzer and a novel microfluidic impedance cytometer. PLoS One. 2012;7(9):e43702. doi: 10.1371/journal.pone.0043702. PONE-D-12-12664
    1. Holden RJ, Karsh B. The technology acceptance model: its past and its future in health care. J Biomed Inform. 2010 Feb;43(1):159–72. doi: 10.1016/j.jbi.2009.07.002. S1532-0464(09)00096-3
    1. IEC 62366-1:2015(en) medical devices — part 1: application of usability engineering to medical devices. International Electrotechnical Commission. 2015. [2022-05-31]. .
    1. DE Bleser Leentje, DE Geest Sabina, Vincke Birgit, Ruppar Todd, Vanhaecke Johan, Dobbels Fabienne. How to test electronic adherence monitoring devices for use in daily life: a conceptual framework. Comput Inform Nurs. 2011 Sep;29(9):489–95. doi: 10.1097/NCN.0b013e31821a1555.
    1. Bangor A, Kortum PT, Miller JT. An empirical evaluation of the System Usability Scale. Int J Hum Comput Interact. 2008 Jul 30;24(6):574–594. doi: 10.1080/10447310802205776.
    1. Kortum P, Peres SC. Evaluation of home health care devices: remote usability assessment. JMIR Hum Factors. 2015 Jun 05;2(1):e10. doi: 10.2196/humanfactors.4570. v2i1e10
    1. Chamberlain JJ, Gilgen E. Do perceptions of insulin pump usability impact attitudes toward insulin pump therapy? a pilot study of individuals with type 1 and insulin-treated type 2 diabetes. J Diabetes Sci Technol. 2015 Jan;9(1):105–10. doi: 10.1177/1932296814552822. 1932296814552822
    1. Arnet I, Rothen JP, Hersberger Kurt E. Validation of a novel electronic device for medication adherence monitoring of ambulatory patients. Pharmacy (Basel) 2019 Nov 20;7(4):155. doi: 10.3390/pharmacy7040155. pharmacy7040155
    1. Elkefi S, Choudhury A, Strachna O, Asan O. Impact of health perception and knowledge on genetic testing decisions using the health belief model. JCO Clin Cancer Inform. 2022 Jan;6:e2100117. doi: 10.1200/CCI.21.00117.
    1. ElKefi S, Asan O. How technology impacts communication between cancer patients and their health care providers: a systematic literature review. Int J Med Inform. 2021 May;149:104430. doi: 10.1016/j.ijmedinf.2021.104430. S1386-5056(21)00056-3
    1. Pablo-Trinidad A, Butterworth I, Ledesma-Carbayo MJ, Vettenburg T, Sánchez-Ferro Álvaro, Soenksen L, Durr NJ, Muñoz-Barrutia Arrate, Cerrato C, Humala K, Fabra Urdiol M, Del Rio C, Valles B, Chen Y, Hochberg EP, Castro-González Carlos, Bourquard A. Automated detection of neutropenia using noninvasive video microscopy of superficial capillaries. Am J Hematol. 2019 Aug;94(8):E219–E222. doi: 10.1002/ajh.25516. doi: 10.1002/ajh.25516.
    1. Bourquard A, Butterworth I, Sanchez-Ferro A, Giancardo L, Soenksen L, Cerrato C, Flores R, Castro-Gonzalez C. Analysis of white blood cell dynamics in nailfold capillaries. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7470–3. doi: 10.1109/EMBC.2015.7320119.
    1. Bourquard A, Pablo-Trinidad A, Butterworth I, Sánchez-Ferro Álvaro, Cerrato C, Humala K, Fabra Urdiola M, Del Rio C, Valles B, Tucker-Schwartz JM, Lee ES, Vakoc BJ, Padera TP, Ledesma-Carbayo MJ, Chen Y, Hochberg EP, Gray ML, Castro-González Carlos. Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation. Sci Rep. 2018 Mar 28;8(1):5301. doi: 10.1038/s41598-018-23591-0. doi: 10.1038/s41598-018-23591-0.10.1038/s41598-018-23591-0
    1. Dinsdale G, Roberts C, Moore T, Manning J, Berks M, Allen J, Anderson ME, Cutolo M, Hesselstrand R, Howell K, Pizzorni C, Smith V, Sulli A, Wildt M, Taylor C, Murray A, Herrick AL. Nailfold capillaroscopy-how many fingers should be examined to detect abnormality? Rheumatology (Oxford) 2019 Feb 01;58(2):284–288. doi: 10.1093/rheumatology/key293.5105785
    1. Smith V, Thevissen K, Trombetta AC, Pizzorni C, Ruaro B, Piette Y, Paolino S, De Keyser F, Sulli A, Melsens K, Cutolo M, EULAR Study Group on Microcirculation in Rheumatic Diseases Nailfold capillaroscopy and clinical applications in systemic sclerosis. Microcirculation. 2016 Jul;23(5):364–72. doi: 10.1111/micc.12281.
    1. McKay GN, Mohan N, Butterworth I, Bourquard A, Sánchez-Ferro Álvaro, Castro-González Carlos, Durr NJ. Visualization of blood cell contrast in nailfold capillaries with high-speed reverse lens mobile phone microscopy. Biomed Opt Express. 2020 Apr 01;11(4):2268–2276. doi: 10.1364/BOE.382376. 382376
    1. Chojnowski MM, Felis-Giemza A, Olesińska M. Capillaroscopy - a role in modern rheumatology. Reumatologia. 2016;54(2):67–72. doi: 10.5114/reum.2016.60215. doi: 10.5114/reum.2016.60215.27669
    1. Sauro J, Lewis J. Chapter 4 - did we meet or exceed our goal? In: Inauro J, Lewis JR, editors. Quantifying the User Experience. 2nd ed. Boston, MA: Morgan Kaufmann; 2016. pp. 39–60.
    1. Toonders SAJ, van Westrienen PE, Konings S, Nieboer ME, Veenhof C, Pisters MF. Patients' perspectives on the usability of a blended approach to an integrated intervention for patients with medically unexplained physical symptoms: mixed methods study. J Med Internet Res. 2021 Sep 28;23(9):e19794. doi: 10.2196/19794. v23i9e19794
    1. Chaniaud N, Megalakaki O, Capo S, Loup-Escande E. Effects of user characteristics on the usability of a home-connected medical device (Smart Angel) for ambulatory monitoring: usability study. JMIR Hum Factors. 2021 Mar 17;8(1):e24846. doi: 10.2196/24846. v8i1e24846
    1. E6(R2) Good Clinical Practice: Integrated Addendum to ICH E6(R1) Guidance for Industry. United States Food and Drug Administration. 2018. [2022-07-29]. .
    1. Lewis J, Sauro J. The Factor Structure of the System Usability Scale. Lecture Notes in Computer Science; HCD 2009: Human Centered Design; July 19-24, 2009; San Diego, CA. 2009. Jul, pp. 94–103.
    1. Sauro J, Lewis JR. Chapter 8 - standardized usability questionnaires. In: Sauro J, Lewis JR, editors. Quantifying the User Experience. 2nd ed. Boston, MA: Morgan Kaufmann; 2016. pp. 185–248.
    1. Brooke J. Usability Evaluation In Industry. London, UK: Taylor and Francis; 1996. SUS: a 'quick and dirty' usability scale; pp. 1–22.
    1. RStudio Team RStudio: integrated development environment for R. RStudio. 2021. [2022-05-31].
    1. Sauro J. 5 ways to interpret a SUS score. Measuring U. 2018. Sep 19, [2022-05-31].
    1. Lewis JR, Sauro J. Item benchmarks for the system usability scale. J Usability Stud. 2018 May 01;13(3):158–167. doi: 10.5555/3294033.3294037.
    1. Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud. 2009 May 01;4(3):114–123. doi: 10.5555/2835587.2835589.
    1. Older Americans and the Internet. Pew Research Center. 2004. Mar 28, [2022-05-23].
    1. Zapata BC, Fernández-Alemán José Luis, Idri A, Toval A. Empirical studies on usability of mHealth apps: a systematic literature review. J Med Syst. 2015 Feb;39(2):1. doi: 10.1007/s10916-014-0182-2.
    1. Yang HH, Yu C, Huang CH, Kuo LH, Yang HJ. Teaching information technology for elder participation: a qualitative analysis of Taiwan retirees. WSEAS Transactions on Information Science and Applications. 2010 Sep 01;7(9):1190–1199. doi: 10.5555/1865374.1865382.
    1. Keller SC, Gurses AP, Werner N, Hohl D, Hughes A, Leff B, Arbaje AI. Older adults and management of medical devices in the home: five requirements for appropriate use. Popul Health Manag. 2017 Aug;20(4):278–286. doi: 10.1089/pop.2016.0070.

Source: PubMed

Подписаться