Immunomodulatory effects of the Agaricus blazei Murrill-based mushroom extract AndoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: a randomized, double blinded clinical study

Jon-Magnus Tangen, Anne Tierens, Jo Caers, Marilene Binsfeld, Ole Kristoffer Olstad, Anne-Marie Siebke Trøseid, Junbai Wang, Geir Erland Tjønnfjord, Geir Hetland, Jon-Magnus Tangen, Anne Tierens, Jo Caers, Marilene Binsfeld, Ole Kristoffer Olstad, Anne-Marie Siebke Trøseid, Junbai Wang, Geir Erland Tjønnfjord, Geir Hetland

Abstract

Forty patients with multiple myeloma scheduled to undergo high dose chemotherapy with autologous stem cell support were randomized in a double blinded fashion to receive adjuvant treatment with the mushroom extract AndoSan, containing 82% of Agaricus blazei Murrill (19 patients) or placebo (21 patients). Intake of the study product started on the day of stem cell mobilizing chemotherapy and continued until the end of aplasia after high dose chemotherapy, a period of about seven weeks. Thirty-three patients were evaluable for all study endpoints, while all 40 included patients were evaluable for survival endpoints. In the leukapheresis product harvested after stem cell mobilisation, increased percentages of Treg cells and plasmacytoid dendritic cells were found in patients receiving AndoSan. Also, in this group, a significant increase of serum levels of IL-1ra, IL-5, and IL-7 at the end of treatment was found. Whole genome microarray showed increased expression of immunoglobulin genes, Killer Immunoglobulin Receptor (KIR) genes, and HLA genes in the Agaricus group. Furthermore, AndoSan displayed a concentration dependent antiproliferative effect on mouse myeloma cells in vitro. There were no statistically significant differences in treatment response, overall survival, and time to new treatment. The study was registered with Clinicaltrials.gov NCT00970021.

Figures

Figure 1
Figure 1
Effect of AndoSan on the proliferation of a murine multiple myeloma cell line in vitro. Proliferation of MOPC315.BM cells was assessed by 3H-labelled thymidine incorporation in the presence of different AndoSan concentrations (1.25%–20%). Results are expressed in percentage of proliferation (mean ± SD) relative to MOPC315.BM cells cultured without AndoSan (= 100%) and represent 3 independent experiments. Within each experiment, proliferation was assessed in triplicate. *P < 0.05, **P < 0.01, and ***P < 0.001 (unpaired Student's t-test).
Figure 2
Figure 2
Time to new treatment. Mean time to new treatment in the Agaricus group (n = 19) was 37.3 months (upper (blue) curve) and in the placebo group (n = 21) 31.4 months (lower (green) curve) (P = 0.47 (n.s)).
Figure 3
Figure 3
Gene expression analysis. K-means clustering algorithm. Cluster three. Several immunoglobulin related genes (IGKC, IgHV4-31, and IGKC) and genes related to Natural Killer cells, Killer Immunoglobulin Receptors (KIR2DL3 and KIR2DL4), are grouped together. These genes are more highly expressed in the Agaricus group (left column).
Figure 4
Figure 4
Ingenuity Pathway Analysis showing upregulation of genes in the HLA presentation pathway (symbols in red) in the Agaricus group and downregulation of HLA genes (symbols in green) in the placebo group.

References

    1. Bataille R., Harrousseau J.-L. Multiple myeloma. The New England Journal of Medicine. 1997;336:1657–1664. doi: 10.1056/nejm199706053362307.
    1. Palumbo A., Anderson K. Multiple myeloma. The New England Journal of Medicine. 2011;364(11):1046–1060. doi: 10.1056/nejmra1011442.
    1. Kristinsson S. Y., Anderson W. F., Landgren O. Improved long-term survival in multiple myeloma up to the age of 80 years. Leukemia. 2014;28(6):1346–1348. doi: 10.1038/leu.2014.23.
    1. Firenzuoli F., Gori L., Lombardo G. The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems. Evidence-Based Complementary and Alternative Medicine. 2008;5(1):3–15. doi: 10.1093/ecam/nem007.
    1. Fujimiya Y., Suzuki Y., Oshiman K.-I., et al. Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunology Immunotherapy. 1998;46(3):147–159. doi: 10.1007/s002620050473.
    1. Kobayashi H., Yoshida R., Kanada Y., et al. Suppressing effects of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. Journal of Cancer Research and Clinical Oncology. 2005;131(8):527–538. doi: 10.1007/s00432-005-0672-1.
    1. Sorimachi K., Akimoto K., Koge T. Inhibitory effect of Agaricu blazei murill components on abnormal collagen fiber formation in human hepatocarcinoma cells. Bioscience, Biotechnology and Biochemistry. 2008;72(2):621–623. doi: 10.1271/bbb.70700.
    1. Endo M., Beppu H., Akiyama H., et al. Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against leukemic cells. Biochimica et Biophysica Acta—General Subjects. 2010;1800(7):669–673. doi: 10.1016/j.bbagen.2010.03.016.
    1. Itoh H., Ito H., Amano H., Noda H. Inhibitory action of a (1→6)-β-D-glucan-protein complex (F III-2-b) isolated from Agaricus blazei Murill (“Himematsutake”) on Meth A fibrosarcoma-bearing mice and its antitumor mechanism. The Japanese Journal of Pharmacology. 1994;66(2):265–271. doi: 10.1254/jjp.66.265.
    1. Murakawa K., Fukunaga K., Tanouchi M., Hosokawa M., Hossain Z., Takahashi K. Therapy of myeloma in vivo using marine phospholipid in combination with Agaricus blazei Murill as an immune respond activator. Journal of Oleo Science. 2007;56(4):179–188. doi: 10.5650/jos.56.179.
    1. Kimura Y., Kido T., Takaku T., Sumiyoshi M., Baba K. Isolation of an anti-angiogenic substance from Agaricus blazei Murill: its antitumor and antimetastatic actions. Cancer Science. 2004;95(9):758–764. doi: 10.1111/j.1349-7006.2004.tb03258.x.
    1. Ohno S., Sumiyoshi Y., Hashine K., Shirato A., Kyo S., Inoue M. Phase I clinical study of the dietary supplement, Agaricus blazei Murill, in cancer patients in remission. Evidence-Based Complementary and Alternative Medicine. 2011;2011:9. doi: 10.1155/2011/192381.192381
    1. Ahn W.-S., Kim D.-J., Chae G.-T., et al. Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. International Journal of Gynecological Cancer. 2004;14(4):589–594. doi: 10.1111/j.1048-891x.2004.14403.x.
    1. Bernardshaw S., Hetland G., Ellertsen L. K., Tryggestad A. M. A., Johnson E. An extract of the medicinal mushroom Agaricus blazei Murill differentially stimulates production of pro-inflammatory cytokines in human monocytes and human vein endothelial cells in vitro. Inflammation. 2005;29(4–6):147–153. doi: 10.1007/s10753-006-9010-2.
    1. Førland D. T., Johnson E., Tryggestad A. M. A., Lyberg T., Hetland G. An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro . Cytokine. 2010;49(3):245–250. doi: 10.1016/j.cyto.2009.09.002.
    1. Hetland G., Tryggestad A. M. A., Espevik T., et al. The medicinal and antitumor mushroom agaricus blazeii murill activates NF- kappaB via TLR2 in monocytic cells and induces expression of cell surface markers and production of cytokines in human monocyte- derived dendritic cells (MDDC) in vitro. European Journal of Cancer Supplements. 2010;8(5):p. 65. doi: 10.1016/s1359-6349(10)71054-5.
    1. Tangen J. M., Tryggestad A. M. A., Hetland G. Stimulation of human monocytic cells by the medicinal mushroom Agaricus blazei Murill induces expression of cell surface markers associated with activation and antigen presentation. Applied Scientific Reports. 2014;1(1):p. 1. doi: 10.7243/2054-9903-1-1.
    1. Ellertsen L. K., Hetland G., Johnson E., Grinde B. Effect of a medicinal extract from Agaricus blazei Murill on gene expression in a human monocyte cell line as examined by microarrays and immuno assays. International Immunopharmacology. 2006;6(2):133–143. doi: 10.1016/j.intimp.2005.07.007.
    1. Grinde B., Hetland G., Johnson E. Effects on gene expression and viral load of a medicinal extract from Agaricus blazei in patients with chronic hepatitis C infection. International Immunopharmacology. 2006;6(8):1311–1314. doi: 10.1016/j.intimp.2006.04.005.
    1. Johnson E., Førland D. T., Sætre L., Bernardshaw S. V., Lyberg T., Hetland G. Effect of an extract based on the medicinal mushroom Agaricus blazeii Murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo . Scandinavian Journal of Gastroenterology. 2012;47(9):984–992.
    1. Førland D. T., Johnson E., Sætre L., Lyberg T., Lygren I., Hetland G. Effect of an extract based on the medicinal mushroom Agaricus blazeii Murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn’s disease. Scandinavian Journal of Immunology. 2011;73(1):66–75. doi: 10.1111/j.1365-3083.2010.02477.x.
    1. Engdal S., Nilsen O. G. In vitro inhibition of CYP3A4 by herbal remedies frequently used by cancer patients. Phytotherapy Research. 2009;23(7):906–912. doi: 10.1002/ptr.2750.
    1. Lenhoff S., Hjorth M., Westin J., et al. Impact of age on survival after intensive therapy for multiple myeloma: a population-based study by the Nordic Myeloma Study Group. British Journal of Haematology. 2006;133(4):389–396. doi: 10.1111/j.1365-2141.2006.06042.x.
    1. Hofgaard P. O., Jodal H. C., Bommert K., et al. A novel mouse model for multiple myeloma () that allows non invasive spatiotemporal detection of osteolytic disease. PLoS ONE. 2012;7(12) doi: 10.1371/journal.pone.0051892.e51892
    1. Wang J. Computational biology of genome expression and regultation—a review of microarray bioinformatics. Journal of Environmental Pathology, Toxicology and Oncology. 2008;27(3):157–159. doi: 10.1615/jenvironpatholtoxicoloncol.v27.i3.10.
    1. Wang J., Bø T. H., Jonassen I., Myklebost O., Hovig E. Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics. 2003;4, article 60 doi: 10.1186/1471-2105-4-60.
    1. Greipp P. R., San Miguel J., Durie B. G., et al. International staging system for multiple myeloma. Journal of Clinical Oncology. 2005;23(15):312–320.
    1. Durie B. G. M., Harousseau J.-L., Miguel J. S., et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–1473. doi: 10.1038/sj.leu.2404284.
    1. Gulbrandsen N., Wisløff F., Nord E., Lenhoff S., Hjorth M., Westin J. Cost-utility analysis of high-dose melphalan with autologous blood stem cell support vs. melphalan plus prednisone in patients younger than 60 years with multiple myeloma. European Journal of Haematology. 2001;66(5):328–336. doi: 10.1034/j.1600-0609.2001.066005328.x.
    1. Dinarello C. A. The interleukin-1 family: 10 years of discovery. The FASEB Journal. 1994;8(15):1314–1325.
    1. Chauffier K., London J., Beaudouin C., Fautrel B. Indications of anakinra. Presse Medicale. 2009;38(5):799–807. doi: 10.1016/j.lpm.2009.01.012.
    1. Lequerré T., Quartier P., Rosellini D., et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Annals of the Rheumatic Diseases. 2008;67(3):302–308. doi: 10.1136/ard.2007.076034.
    1. Dinarello C. A. Why not treat human cancer with interleukin-1 blockade? Cancer and Metastasis Reviews. 2010;29(2):317–329. doi: 10.1007/s10555-010-9229-0.
    1. Gherardi R. K., Bélec L., Soubrier M., et al. Overproduction of proinflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–1465.
    1. Lust J. A., Donovan K. A. The role of interleukin-1β in the pathogenesis of multiple myeloma. Hematology/Oncology Clinics of North America. 1999;13(6):1117–1125. doi: 10.1016/s0889-8588(05)70115-5.
    1. Lust J. A., Lacy M. Q., Zeldenrust S. R., et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1β-induced interleukin 6 production and the myeloma proliferative component. Mayo Clinic Proceedings. 2009;84(2):114–122. doi: 10.4065/84.2.114.
    1. Dubucquoi S., Desreumaux P., Janin A., et al. Interleukin 5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. The Journal of Experimental Medicine. 1994;179(2):703–708. doi: 10.1084/jem.179.2.703.
    1. Wong T. W., Kita H., Hanson C. A., Walters D. K., Arendt B. K., Jelinek D. F. Induction of malignant plasma cell proliferation by eosinophild. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0070554.e70554
    1. Fry T. J., Mackall C. L. Interleukin-7: from bench to clinic. Blood. 2002;99(11):3892–3904. doi: 10.1182/blood.v99.11.3892.
    1. Condomines M., Veyrune J.-L., Larroque M., et al. Increased plasma-immune cytokines throughout the high-dose melphalan-induced lymphodepletion in patients with multiple myeloma: a window for adoptive immunotherapy. The Journal of Immunology. 2010;184(2):1079–1084. doi: 10.4049/jimmunol.0804159.
    1. Haribhai D., Williams J. B., Jia S., et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 2011;35(1):109–122. doi: 10.1016/j.immuni.2011.03.029.
    1. Bates G. J., Fox S. B., Han C., et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. Journal of Clinical Oncology. 2006;24(34):5373–5380. doi: 10.1200/JCO.2006.05.9584.
    1. Beyer M., Kochanek M., Darabi K., et al. Reduced frequencies and suppressive function of CD4+CD25 hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005;106(6):2018–2025. doi: 10.1182/blood-2005-02-0642.
    1. Vignali D. A. A., Collison L. W., Workman C. J. How regulatory T cells work. Nature Reviews Immunology. 2008;8(7):523–532. doi: 10.1038/nri2343.
    1. Giannopoulos K., Kaminska W., Hus I., Dmoszynska A. The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. British Journal of Cancer. 2012;106(3):546–552. doi: 10.1038/bjc.2011.575.
    1. Bryant C., Suen H., Brown R., et al. Long-term survival in multiple myeloma is associated with a distinct immunological profile, which includes proliferative cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood Cancer Journal. 2013;3(9, article e148) doi: 10.1038/bcj.2013.34.
    1. Pasiarski M., Grywalska E., Kosmaczewska A., Góźdź S., Roliński J. The frequency of myeloid and lymphoid dendritic cells in multiple myeloma patients is inversely correlated with disease progression. Postepy Higieny i Medycyny Doswiadczalnej. 2013;67:926–932. doi: 10.5604/17322693.1065871.
    1. Berven L., Karppinen P., Hetland G., Samuelsen A. B. C. The polar high molecular weight fraction of the Agaricus blazei Murill extract, AndoSan, reduces the activity of the tumor-associated protease, legumain, in RAW 264.7 cells. Journal of Medicinal Food. 2014 doi: 10.1089/jmf.2014.0018.

Source: PubMed

Подписаться