Long-term Follow-up of Measles Antibodies

September 21, 2011 updated by: Bandim Health Project

Long-term Follow-up of Protective Measles Antibodies in the Two-dose Study of Standard-titre Measles Vaccine in Guinea-Bissau

Few data exist on long-term persistence of measles antibodies after vaccination of West African infants. The data that do exist indicate that the antibody titres decline very rapidly. Our data would be the first to describe the persistence of measles antibodies after two doses of measles vaccine, and the study would allow us to identify unprotected children and offer them revaccination. Since persistence of measles antibodies is of crucial importance to measles control, the study will contribute significantly to the existing knowledge and might have important implications for future eradication programmes.

Study Overview

Status

Completed

Conditions

Intervention / Treatment

Detailed Description

Objective To determine persistence of measles antibodies among children who received either one or two doses of Edmonston-Zagreb (EZ) or Schwarz (SW) measles vaccine.

Background The World Health Organization has targeted measles for eradication by the year 2010, and although measles incidence has fallen drastically in many parts of the world, several factors could hinder the eradication goal.

First, there is no indication of improved measles immunisation coverage world wide, vaccination coverage fell in all regions of the world from 1997 to 1998, except in the Western Pacific, so the general measles immunisation coverage came down to 72%. Very high vaccination coverage of ≥ 95% is needed to interrupt transmission of the highly contagious measles virus.

Primary and secondary vaccine failure constitute another significant problem to measles control, and the HIV pandemic contributes to increased vaccine failure, and permits transmission of measles virus despite high rates of immunisation coverage.

Sub-clinical measles has been found to contribute to measles immunity by boosting of the antibody level, and with less circulation of wild measles virus secondary vaccine failure may represent a special problem in terms of waning immunity, a problem which is probably more pronounced among those vaccinated early, but there are still few data relevant to this problem.

Thus, although effective measles vaccines are available, there is still a need to find the optimal way of immunising in different epidemiological settings. In areas with high measles transmission early two-dose measles vaccination schedules have been recommended for prevention of measles in the age group below the normal age of vaccination, and as a means of raising vaccination coverage in general. We conducted such a two-dose trial with two different strains of measles vaccine in Guinea-Bissau, and found that the risk of not being vaccinated was lower in the two-dose group than in the one-dose group, and the relative efficacy of a two-dose versus a one-dose schedule was high among children below the normal age of vaccination. Further, we found that both one or two doses of the EZ vaccine resulted in 1% of the children being unprotected at 18 months of age, while one or two doses of SW resulted in 3% and 9% unprotected, respectively. The EZ vaccine, but not the SW vaccine, was able to boost the antibody response significantly after revaccination at 9 months of age in children with moderate levels of antibodies.

We therefore propose to study long-term persistence of measles antibodies in this cohort where we found rather striking differences in protection at 18 months of age according to vaccine strain and number of doses to find out whether the measles antibody level is maintained over time or waning immunity is a problem, since this could have important implications for global measles control and elimination.

Methods With 85% seroconverters in the one-dose group we would be able to detect a difference of 10% in number of non-seroconverters with a sample size of 400 children to be blood sampled in each group.

Among 6,900 children with an 18 months blood sample (10% loss to follow-up between 6 and 18 months of age), we will include all the children who received the EZ vaccine to be blood sampled at 6-7 years of age. Available are 450 samples from 18 months of age, and with 20% loss to follow-up we will have a total of 360 children in this group.

Among children who received the SW vaccine we plan to follow up half of the children at 6-7 years of age, and the other half 3 years later at 9-10 years of age. Including the first 2,000 children with an 18 months blood sample we will be able to include about 1,600 children in the study with 20% loss to follow-up. Thus we will have 400 children in each arm of the study (one dose / two dose) at 6-7 and at 9-10 years of age.

Children with unprotective measles antibody level will be offered revaccination.

Study Type

Interventional

Enrollment

1960

Phase

  • Phase 4

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Apartado 861
      • Bissau, Apartado 861, Guinea-Bissau, 1004 Bissau Codex
        • Bandim Health Project

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

6 years to 10 years (Child)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria: Children participating in the Two-dose trial (Non-Specific Effects of Standard Titre Measles Vaccination, Protocol ID: IC18-CT95-0011-Twodose1)

Exclusion Criteria: Severe illness requiring hospitalisation

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Prevention
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measles antibody level

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Director: PETER AABY, MSc, Dr Med, Bandim Health Project
  • Principal Investigator: MAY-LILL GARLY, PHD, DTM&H, Bandim Health Project

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

March 1, 2002

Primary Completion

December 7, 2022

Study Completion (Actual)

January 1, 2007

Study Registration Dates

First Submitted

September 9, 2005

First Submitted That Met QC Criteria

September 9, 2005

First Posted (Estimate)

September 15, 2005

Study Record Updates

Last Update Posted (Estimate)

September 22, 2011

Last Update Submitted That Met QC Criteria

September 21, 2011

Last Verified

September 1, 2006

More Information

Terms related to this study

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Measles

Clinical Trials on Measles vaccine

3
Subscribe