Study of the Safety and Immunogenicity of Bacille Calmette Guerin (BCG) Vaccine

April 4, 2008 updated by: University of Oxford

A Phase I Study of the Safety and Immunogenicity of BCG (Bacille Calmette-Guerin) Vaccine Delivered Intradermally by a Needle Injection in Healthy Volunteers Who Have Previously Received BCG.

Tuberculosis (TB) kills about three million people annually. It is estimated that one third of the world's population are latently infected with Mycobacterium tuberculosis (M.tb). Multi-drug resistant strains of M.tb, and co-infection with M.tb and HIV present major new challenges. The currently available vaccine, M. bovis BCG, is largely ineffective at protecting against adult pulmonary disease in endemic areas and it is widely agreed that a new more effective tuberculosis vaccine is a major global public health priority1. However, it may be unethical and impractical to test and deploy a vaccine strategy that does not include BCG, as BCG does confer worthwhile protection against TB meningitis and leprosy. An immunisation strategy that includes BCG is also attractive because the populations in which this vaccine candidate will need to be tested will already have been immunised with BCG.

M.tb is an intracellular organism. CD4+ Th1-type cellular responses are essential for protection and there is increasing evidence from animal and human studies that CD8+ T cells also play a protective role2. However, it has generally been difficult to induce strong cellular immune responses in humans using subunit vaccines. DNA vaccines induce both CD4+ and CD8+ T cells and thus offer a potential new approach to a TB vaccine. DNA vaccines encoding various antigens from M. tuberculosis have been evaluated in the murine model, and to date no DNA vaccine alone has been shown to be superior to BCG.

A heterologous prime-boost immunisation strategy involves giving two different vaccines, each encoding the same antigen, several weeks apart. Such regimes are extremely effective at inducing a cellular immune response. Using a DNA- prime/MVA-boost immunisation strategy induces high levels of CD8+ T cells in animal models of malaria and HIV5, and high levels of both CD4+ and CD8+ T cells in animal models of TB. BCG immunisation alone induces only CD4+ T cells in mice. A prime-boost strategy using BCG as the prime and a recombinant MVA encoding an antigen from M.tb that is also present in BCG (antigen 85A: 'MVA85A') as the boost, induces much higher levels of CD4+ T cells than BCG or MVA85A alone. In addition, this regime generates specific CD8+ T cells that are undetectable following immunisation with BCG alone.

Study Overview

Status

Completed

Conditions

Intervention / Treatment

Detailed Description

Recombinant viruses as vaccines.

Recombinant viruses used alone have for some years represented a promising vaccine delivery system, particularly for inducing cellular immune responses8. The recombinant virus encodes the immunising protein or peptide. Immunisation by a recombinant virus vaccine occurs when host cells take up and express the inoculated attenuated virus encoding a protective antigen. The expressed protein often has the native conformation, glycosylation, and other post-translational modifications that occur during natural infection. Recombinant viral vaccines may elicit both antibody and cytotoxic T-lymphocyte responses, which persist without further immunisations.

Many viruses have been investigated as potential recombinant vaccines. The successful worldwide eradication of smallpox via vaccination with live vaccinia virus highlighted vaccinia as a candidate for recombinant use. The recognition in recent years that non-replicating strains of poxvirus such as MVA and avipox vectors can be more immunogenic than traditional replicating vaccinia strains has enhanced the attractiveness of this approach. MVA (modified vaccinia virus Ankara) is a strain of vaccinia virus which has been passaged more than 570 times though avian cells, is replication incompetent in human cell lines and has a good safety record. It has been administered to more than 120,000 vaccinees as part of the smallpox eradication programme, with no adverse effects, despite the deliberate vaccination of high risk groups. This safety in man is consistent with the avirulence of MVA in animal models. MVA has six major genomic deletions compared to the parental genome severely compromising its ability to replicate in mammalian cells. Viral replication is blocked late during infection of cells but importantly viral and recombinant protein synthesis is unimpaired even during this abortive infection. Replication-deficient recombinant MVA has been seen as an exceptionally safe viral vector. When tested in animal model studies recombinant MVAs have been shown to be avirulent, yet protectively immunogenic as vaccines against viral diseases and cancer. The most useful data on the safety and efficacy of various doses of a recombinant MVA vaccine comes from clinical trial data with a recombinant MVA expressing a number of CTL epitopes from Plasmodium falciparum pre-erythrocytic antigens fused to a complete pre-erythrocytic stage antigen, Thrombospondin Related Adhesion Protein (TRAP). These trials have given a total of 169 immunisations with this recombinant MVA, to 49 UK vaccinees 38 Gambian vaccines (20 of whom were children aged 1-5). 6 doses of 1 x 10^7 pfu, 139 doses of 5 x 10^7 pfu, 6 doses of 1 x 10^8 pfu and 18 doses of 2.5 x 10^8 pfu have been administered, all without serious adverse effects.

Recombinant MVA encoding antigen 85A

Secreted antigens from M. tuberculosis are released from actively metabolising bacteria, and are important targets in protective immunity. Antigen 85A is a major secreted antigen from M. tuberculosis which forms part of the antigen 85 complex (A, B and C). This complex constitutes a major portion of the secreted proteins of both M.tb and BCG. It is involved in fibronectin binding within the cell wall and has mycolyltransferase activity.

MVA85A induces both a CD4+ and a CD8+ epitope when used to immunise mice. When mice are primed with BCG and then given MVA85A as a boost, the levels of CD4+ and CD8+ T cells induced are higher than with either BCG or MVA85A alone.

We are evaluating the safety and immunogenicity of the following 3 groups:

  1. BCG alone
  2. MVA85A alone
  3. BCG prime-MVA85A boost

BCG-BCG provides a control group for BCG-MVA85A. Many countries have a tradition of repeated BCG vaccination and the criteria for revaccination differ between countries.

Study Type

Interventional

Enrollment (Actual)

11

Phase

  • Phase 1

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Oxfordshire
      • Oxford, Oxfordshire, United Kingdom, OX3 7LJ
        • Centre for Clinical Vaccinology and Tropical Medicine

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 55 years (Adult)

Accepts Healthy Volunteers

Yes

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Healthy adult aged 18-55 years.
  • Normal medical history and physical examination.
  • Normal urine dipstick, blood count, liver enzymes, and creatinine.

Exclusion Criteria:

  • Exposure to TB at any point. A positive ESAT6/CFP10 Elispot response (defined as greater than 5 spots/well above background and at least double the background response).
  • Clinically significant history of skin disorder (eczema, psoriasis, etc.), allergy, immunodeficiency, cardiovascular disease, respiratory disease, endocrine disorder, liver disease, renal disease, gastrointestinal disease, neurological illness, psychiatric disorder, drug or alcohol abuse.
  • Oral or systemic steroid medication or the use of immunosuppressive agents.
  • Positive HIV antibody test, HCV antibody test or positive HBV serology except post-vaccination.
  • Heaf test greater than Grade II
  • Confirmed pregnancy

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Prevention
  • Allocation: Non-Randomized
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: 1
BCG delivered intradermally into the deltoid region in volunteers who have received BCG 10 - 20 years previously.
intradermal injection of 0.1ml BCG over the deltoid muscle
Other Names:
  • Bacille Calmette-Guerin

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Time Frame
The occurence and severity of local side-effects The occurence and severity of systemic side-effects
Time Frame: 1 year
1 year

Secondary Outcome Measures

Outcome Measure
Time Frame
The induction of T cell responses (as measured by an interferon-gamma Elispot assay). Other exploratory cellular immunology assays will be performed as such assays are developed.
Time Frame: 1 year
1 year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

February 1, 2004

Primary Completion (Actual)

November 1, 2005

Study Completion (Actual)

November 1, 2005

Study Registration Dates

First Submitted

April 2, 2008

First Submitted That Met QC Criteria

April 4, 2008

First Posted (Estimate)

April 7, 2008

Study Record Updates

Last Update Posted (Estimate)

April 7, 2008

Last Update Submitted That Met QC Criteria

April 4, 2008

Last Verified

March 1, 2008

More Information

Terms related to this study

Other Study ID Numbers

  • TB006

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on TB

Clinical Trials on BCG

3
Subscribe