Manual Versus Automated Choroidal Thickness Measurements Using Swept-source Anterior Segment OCT

January 25, 2022 updated by: Khaled Abdelazeem, Assiut University

Comparison of Manual Versus Automated Choroidal Thickness Measurements Using Swept-source Anterior Segment Optical Coherence Tomography

The choroid, which is located between the retina and the sclera, is a connective tissue layer that is densely packed with blood vessels and is responsible for supplying oxygen and nutrients to the retina's periphery. One of the primary functions of the choroid is to support the metabolism of the retinal pigment epithelium (RPE). It is implicated in the pathogenesis of a variety of retinal disorders, including age-related macular degeneration, polypoidal choroidal vasculopathy, central serous chorioretinopathy, and high myopia-associated chorio retinal atrophies. Because choroidal alteration has a fundamental role in the development and progression of these diseases, choroidal thickness provides comprehensive information to physicians.

For the study of the choroid, researchers have used ultrasound, magnetic resonance imaging MRI, and Doppler laser, but these methods have limited utility due to a lack of resolution. Contrary to this, indocyanine green (ICG) angiography provides valuable clinical information but does not provide cross-sectional images of the choroid for in vivo research studies.

Optical coherence tomography (OCT) has gained in popularity in clinical and experimental ophthalmology over the last decade as a way to acquire detailed, three-dimensional images of the retina . Imaging the entire choroid, on the other hand, has proven to be more difficult due to the significant decline in signal strength beyond the RPE prompted by the pigment in the RPE and choroid and light scattering in the vasculature. The development of improved depth imaging (EDI) by Spaide et al. opened the door to quantitative choroid assessment. Choroid imaging is currently possible using one of two optical coherence tomography (OCT) techniques: (1) spectral-domain (SD) OCT utilizing standard light sources using EDI, and (2) swept-source (SS) OCT using a long wavelength light .A 1 m-band light source is used in SS-OCT, which penetrates deeper into the retino choroidal tissues and so optimizes the resolution. To better visualize retinal and choroidal changes, SS-OCT can concurrently display a focused image of both the retina and the choroid. This renders it an accurate technology for assessing choroidal thickness.

Such findings of choroidal thickness changes revealed that the choroid and choroidal thickness may be important attributes in the evaluation of ocular pathology. To properly understand the scientific value of these potential choroidal thickness variations, it would appear that comprehensive and systematic normative values for choroidal thickness are fundamental.

Study Overview

Status

Completed

Conditions

Study Type

Observational

Enrollment (Actual)

80

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

      • Assiut, Egypt, 71515
        • Faculty of medicine

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 45 years (Adult)

Accepts Healthy Volunteers

N/A

Genders Eligible for Study

All

Sampling Method

Non-Probability Sample

Study Population

Normal adult volunteers

Description

Inclusion Criteria:

  • Normal adult volunteers

Exclusion Criteria:

  • Eyes with chorioretinal or vitreoretinal diseases
  • History of intraocular surgery
  • Glaucoma.
  • Systemic diseases or conditions that could affect retinal or choroidal thickness,
  • Pregnant women

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Choroidal thickness
Time Frame: 1 day
Manual and automated measurement of choroidal thickness
1 day

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

October 1, 2021

Primary Completion (Actual)

December 1, 2021

Study Completion (Actual)

January 1, 2022

Study Registration Dates

First Submitted

January 25, 2022

First Submitted That Met QC Criteria

January 25, 2022

First Posted (Actual)

January 27, 2022

Study Record Updates

Last Update Posted (Actual)

January 27, 2022

Last Update Submitted That Met QC Criteria

January 25, 2022

Last Verified

January 1, 2022

More Information

Terms related to this study

Additional Relevant MeSH Terms

Other Study ID Numbers

  • 17300719

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Eye Diseases

Clinical Trials on Optical Coherence Tomography imaging of choroid

3
Subscribe