Diabetes and hypertension: is there a common metabolic pathway?

Bernard M Y Cheung, Chao Li, Bernard M Y Cheung, Chao Li

Abstract

Diabetes and hypertension frequently occur together. There is substantial overlap between diabetes and hypertension in etiology and disease mechanisms. Obesity, inflammation, oxidative stress, and insulin resistance are thought to be the common pathways. Recent advances in the understanding of these pathways have provided new insights and perspectives. Physical activity plays an important protective role in the two diseases. Knowing the common causes and disease mechanisms allows a more effective and proactive approach in their prevention and treatment.

Figures

Fig. 1
Fig. 1
Summary of putative pathophysiologic mechanisms in the development of hypertension in diabetes mellitus. RAAS—renin-angiotensin-aldosterone system; SNS—sympathetic nervous system; VSMC—vascular smooth muscle cell. (From Mugo MN, Stump CS, Rao PG, Sowers JR. Chapter 34: Hypertension and Diabetes Mellitus. Hypertension: A Companion to Braunwald’s Heart Disease. Copyright Elsevier, 2007 [113])

References

    1. • Cheung BM. The hypertension-diabetes continuum. J Cardiovasc Pharmacol. 2010; 55: 333–9. This is a brief review of the overlap between hypertension and type 2 diabetes that proposes there is a spectrum ranging from hypertension without dysglycemia to type 2 diabetes without elevated blood pressure.
    1. Landsberg L, Molitch M. Diabetes and hypertension: pathogenesis, prevention and treatment. Clin Exp Hypertens. 2004;26:621–628. doi: 10.1081/CEH-200031945.
    1. Gress TW, Nieto FJ, Shahar E, et al. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med. 2000;342:905–912. doi: 10.1056/NEJM200003303421301.
    1. Cheung BM, Wat NM, Tso AW, et al. Association between raised blood pressure and dysglycemia in Hong Kong Chinese. Diabetes Care. 2008;31:1889–1891. doi: 10.2337/dc08-0405.
    1. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–645. doi: 10.1038/ng.120.
    1. Sober S, Org E, Kepp K, et al. Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array. PLoS One. 2009;4:e6034. doi: 10.1371/journal.pone.0006034.
    1. Ong KL, Tso AW, Leung RY, et al. A genetic variant in the gene encoding adrenomedullin predicts the development of dysglycemia over 6.4 years in Chinese. Clin Chim Acta. 2011;412:353–357. doi: 10.1016/j.cca.2010.11.007.
    1. Ong KL, Jiang CQ, Liu B, et al. Association of a genetic variant in the apolipoprotein A5 gene with the metabolic syndrome in Chinese. Clin Endocrinol (Oxf) 2011;74:206–213. doi: 10.1111/j.1365-2265.2010.03899.x.
    1. Cheung CY, Tso AW, Cheung BM, et al. Genetic variants associated with persistent central obesity and the metabolic syndrome in a 12-year longitudinal study. Eur J Endocrinol. 2011;164:381–388. doi: 10.1530/EJE-10-0902.
    1. Ong KL, Li M, Tso AW, et al. Association of genetic variants in the adiponectin gene with adiponectin level and hypertension in Hong Kong Chinese. Eur J Endocrinol. 2010;163:251–257. doi: 10.1530/EJE-10-0251.
    1. Ong KL, Leung RY, Wong LY, et al. Association of a polymorphism in the lipin 1 gene with systolic blood pressure in men. Am J Hypertens. 2008;21:539–545. doi: 10.1038/ajh.2008.21.
    1. Ong KL, Wong LY, Man YB, et al. Haplotypes in the urotensin II gene and urotensin II receptor gene are associated with insulin resistance and impaired glucose tolerance. Peptides. 2006;27:1659–1667. doi: 10.1016/j.peptides.2006.02.008.
    1. Chow WS, Cheung BM, Tso AW, et al. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension. 2007;49:1455–1461. doi: 10.1161/HYPERTENSIONAHA.107.086835.
    1. Tso AW, Sham PC, Wat NM, et al. Polymorphisms of the gene encoding adiponectin and glycaemic outcome of Chinese subjects with impaired glucose tolerance: a 5-year follow-up study. Diabetologia. 2006;49:1806–1815. doi: 10.1007/s00125-006-0324-2.
    1. Ng MC, So WY, Lam VK, et al. Genome-wide scan for metabolic syndrome and related quantitative traits in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25. Diabetes. 2004;53:2676–2683. doi: 10.2337/diabetes.53.10.2676.
    1. Ng MC, So WY, Cox NJ, et al. Genome-wide scan for type 2 diabetes loci in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25. Diabetes. 2004;53:1609–1613. doi: 10.2337/diabetes.53.6.1609.
    1. • Ross KA. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med. 2011; 9: 12. This article showed that somatic gene conversion could be a significant causative factor in seven diseases, including hypertension, type 1 diabetes, and type 2 diabetes. There are some common SNPs identified in some of the seven diseases.
    1. Moore TR. Fetal exposure to gestational diabetes contributes to subsequent adult metabolic syndrome. Am J Obstet Gynecol. 2010;202:643–649. doi: 10.1016/j.ajog.2010.02.059.
    1. • Xita N, Tsatsoulis A. Fetal origins of the metabolic syndrome. Ann N Y Acad Sci. 2010; 1205: 148–55. This article argued that consequences of fetal adaptive responses might be evident later in life rather than at birth. Risk factors in pregnancy might predispose the fetus to hypertension, diabetes, or the metabolic syndrome in adulthood.
    1. Guerrero-Romero F, Aradillas-Garcia C, Simental-Mendia LE, et al. Birth weight, family history of diabetes, and metabolic syndrome in children and adolescents. J Pediatr. 2010;156:719–23, 723 e1.
    1. Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol. 2004;286:H1597–1602. doi: 10.1152/ajpheart.00026.2004.
    1. Davy KP, Hall JE. Obesity and hypertension: two epidemics or one? Am J Physiol Regul Integr Comp Physiol. 2004;286:R803–813. doi: 10.1152/ajpregu.00707.2003.
    1. • He YH, Jiang GX, Yang Y, et al. Obesity and its associations with hypertension and type 2 diabetes among Chinese adults age 40 years and over. Nutrition. 2009; 25: 1143–9. This was a cross-sectional study of over 5000 people in the community in Shanghai showing that obesity was associated with a higher risk of both hypertension and type 2 diabetes.
    1. Loos RJ, Bouchard C. Obesity–is it a genetic disorder? J Intern Med. 2003;254:401–425. doi: 10.1046/j.1365-2796.2003.01242.x.
    1. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997;27:325–351. doi: 10.1023/A:1025635913927.
    1. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950;41:317–318.
    1. Saunders CL, Chiodini BD, Sham P, et al. Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring). 2007;15:2263–2275. doi: 10.1038/oby.2007.269.
    1. Wang K, Li WD, Zhang CK, et al. A genome-wide association study on obesity and obesity-related traits. PLoS One. 2011;6:e18939. doi: 10.1371/journal.pone.0018939.
    1. Cheung CY, Tso AW, Cheung BM, et al. Obesity susceptibility genetic variants identified from recent genome-wide association studies: implications in a chinese population. J Clin Endocrinol Metab. 2010;95:1395–1403. doi: 10.1210/jc.2009-1465.
    1. Wang T, Huang Y, Xiao XH, et al. The association between common genetic variation in the FTO gene and metabolic syndrome in Han Chinese. Chin Med J (Engl). 2010;123:1852–1858.
    1. Wing MR, Ziegler JM, Langefeld CD, et al. Analysis of FTO gene variants with obesity and glucose homeostasis measures in the multiethnic Insulin Resistance Atherosclerosis Study cohort. Int J Obes (Lond). 2010.
    1. Ng MC, Tam CH, So WY, et al. Implication of genetic variants near NEGR1, SEC16B, TMEM18, ETV5/DGKG, GNPDA2, LIN7C/BDNF, MTCH2, BCDIN3D/FAIM2, SH2B1, FTO, MC4R, and KCTD15 with obesity and type 2 diabetes in 7705 Chinese. J Clin Endocrinol Metab. 2010;95:2418–2425. doi: 10.1210/jc.2009-2077.
    1. Song Y, Altarejos J, Goodarzi MO, et al. CRTC3 links catecholamine signalling to energy balance. Nature. 2010;468:933–939. doi: 10.1038/nature09564.
    1. Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens. 2006;15:152–158.
    1. Stehouwer CD, Gall MA, Twisk JW, et al. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes. 2002;51:1157–1165. doi: 10.2337/diabetes.51.4.1157.
    1. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Tracy RP. Emerging relationships of inflammation, cardiovascular disease and chronic diseases of aging. Int J Obes Relat Metab Disord. 2003;27(Suppl 3):S29–34. doi: 10.1038/sj.ijo.0802497.
    1. Tracy RP. Inflammation, the metabolic syndrome and cardiovascular risk. Int J Clin Pract Suppl. 2003;134:10–17.
    1. Karnoutsos K, Papastergiou P, Stefanidis S, et al. Periodontitis as a risk factor for cardiovascular disease: the role of anti-phosphorylcholine and anti-cardiolipin antibodies. Hippokratia. 2008;12:144–149.
    1. Persson GR, Persson RE. Cardiovascular disease and periodontitis: an update on the associations and risk. J Clin Periodontol. 2008;35:362–379. doi: 10.1111/j.1600-051X.2008.01281.x.
    1. Watanabe K, Petro BJ, Shlimon AE, et al. Effect of periodontitis on insulin resistance and the onset of type 2 diabetes mellitus in Zucker diabetic fatty rats. J Periodontol. 2008;79:1208–1216. doi: 10.1902/jop.2008.070605.
    1. Nesbitt MJ, Reynolds MA, Shiau H, et al. Association of periodontitis and metabolic syndrome in the Baltimore Longitudinal Study of Aging. Aging Clin Exp Res. 2010;22:238–242.
    1. Tsioufis C, Kasiakogias A, Thomopoulos C, et al. Periodontitis and blood pressure: the concept of dental hypertension. Atherosclerosis. 2011;219:1–9.
    1. Page RC. The pathobiology of periodontal diseases may affect systemic diseases: inversion of a paradigm. Ann Periodontol. 1998;3:108–120. doi: 10.1902/annals.1998.3.1.108.
    1. Hung HC, Willett W, Merchant A, et al. Oral health and peripheral arterial disease. Circulation. 2003;107:1152–1157. doi: 10.1161/01.CIR.0000051456.68470.C8.
    1. Blake GJ, Rifai N, Buring JE, et al. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation. 2003;108:2993–2999. doi: 10.1161/.
    1. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89:763–771. doi: 10.1161/hh2101.099270.
    1. Sesso HD, Buring JE, Rifai N, et al. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290:2945–2951. doi: 10.1001/jama.290.22.2945.
    1. Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci. 2007;112:375–384. doi: 10.1042/CS20060247.
    1. Griendling KK, Minieri CA, Ollerenshaw JD, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–1148.
    1. Yamakawa T, Tanaka S, Numaguchi K, et al. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension. 2000;35:313–318.
    1. Taubman MB, Berk BC, Izumo S, et al. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem. 1989;264:526–530.
    1. Ushio-Fukai M, Alexander RW, Akers M, et al. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998;273:15022–15029. doi: 10.1074/jbc.273.24.15022.
    1. Hernandez-Presa M, Bustos C, Ortego M, et al. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation. 1997;95:1532–1541.
    1. Schieffer B, Luchtefeld M, Braun S, et al. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res. 2000;87:1195–1201.
    1. Jesmin J, Rashid MS, Jamil H, et al. Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension. BMC Med Genomics. 2010;3:45.
    1. Tsuchida A, Yamauchi T, Takekawa S, et al. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes. 2005;54:3358–3370. doi: 10.2337/diabetes.54.12.3358.
    1. Chawla A, Barak Y, Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med. 2001;7:48–52. doi: 10.1038/83336.
    1. Shah P, Mittal A, Bharatam PV. CoMFA analysis of dual/multiple PPAR activators. Eur J Med Chem. 2008;43:2784–2791. doi: 10.1016/j.ejmech.2008.01.017.
    1. Madhavan GR, Chakrabarti R, Reddy KA, et al. Dual PPAR-alpha and -gamma activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg Med Chem. 2006;14:584–591. doi: 10.1016/j.bmc.2005.08.043.
    1. Koh KK, Quon MJ, Han SH, et al. Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation. 2004;110:3687–3692. doi: 10.1161/01.CIR.0000143085.86697.13.
    1. Koh KK, Son JW, Ahn JY, et al. Simvastatin combined with ramipril treatment in hypercholesterolemic patients. Hypertension. 2004;44:180–185. doi: 10.1161/01.HYP.0000133310.42762.25.
    1. Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289:1799–1804. doi: 10.1001/jama.289.14.1799.
    1. Witkowska AM. Soluble ICAM-1: a marker of vascular inflammation and lifestyle. Cytokine. 2005;31:127–134. doi: 10.1016/j.cyto.2005.04.007.
    1. • Sjogren P, Cederholm T, Heimburger M, et al. Simple advice on lifestyle habits and long-term changes in biomarkers of inflammation and vascular adhesion in healthy middle-aged men. Eur J Clin Nutr. 2010; 64: 1450–6. This article showed that even small efforts to improve diet and physical activity could influence biomarkers of inflammation. Such efforts may improve vascular function reducing the risk of diabetes and hypertension.
    1. Yki-Järvinen H. Nonglycemic effects of insulin. Clin Cornerstone. 2003; Suppl 4: S6-12.
    1. Jellinger PS. Metabolic consequences of hyperglycemia and insulin resistance. Clin Cornerstone. 2007;8(Suppl 7):S30–42. doi: 10.1016/S1098-3597(07)80019-6.
    1. Deedwania P. Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating beta-blockers. J Clin Hypertens (Greenwich). 2011;13:52–59. doi: 10.1111/j.1751-7176.2010.00386.x.
    1. Stump CS, Clark SE, Sowers JR. Oxidative stress in insulin-resistant conditions: cardiovascular implications. Treat Endocrinol. 2005;4:343–351. doi: 10.2165/00024677-200504060-00003.
    1. Leiter LA, Lewanczuk RZ. Of the renin-angiotensin system and reactive oxygen species Type 2 diabetes and angiotensin II inhibition. Am J Hypertens. 2005;18:121–128. doi: 10.1016/j.amjhyper.2004.07.001.
    1. Sharma AM, Engeli S. The role of renin-angiotensin system blockade in the management of hypertension associated with the cardiometabolic syndrome. J Cardiometab Syndr. 2006;1:29–35. doi: 10.1111/j.0197-3118.2006.05422.x.
    1. Ceriello A. Oxidative stress and glycemic regulation. Metabolism. 2000;49:27–29. doi: 10.1016/S0026-0495(00)80082-7.
    1. Boden G, Laakso M. Lipids and glucose in type 2 diabetes: what is the cause and effect? Diabetes Care. 2004;27:2253–2259. doi: 10.2337/diacare.27.9.2253.
    1. Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta. 2006;368:1–19. doi: 10.1016/j.cca.2005.12.026.
    1. Fonseca V, Desouza C, Asnani S, et al. Nontraditional risk factors for cardiovascular disease in diabetes. Endocr Rev. 2004;25:153–175. doi: 10.1210/er.2002-0034.
    1. Meigs JB, Mittleman MA, Nathan DM, et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. JAMA. 2000;283:221–228. doi: 10.1001/jama.283.2.221.
    1. Grundy SM, Brewer HB, Jr, Cleeman JI, et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–438. doi: 10.1161/01.CIR.0000111245.75752.C6.
    1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–1428. doi: 10.1016/S0140-6736(05)66378-7.
    1. Yeni-Komshian H, Carantoni M, Abbasi F, et al. Relationship between several surrogate estimates of insulin resistance and quantification of insulin-mediated glucose disposal in 490 healthy nondiabetic volunteers. Diabetes Care. 2000;23:171–175. doi: 10.2337/diacare.23.2.171.
    1. Lillioja S, Mott DM, Zawadzki JK, et al. In vivo insulin action is familial characteristic in nondiabetic Pima-Indians. Diabetes. 1987;36:1329–1335. doi: 10.2337/diabetes.36.11.1329.
    1. Zoratti R, Godsland IF, Chaturvedi N, et al. Relation of plasma lipids to insulin resistance, nonesterified fatty acid levels, and body fat in men from three ethnic groups: relevance to variation in risk of diabetes and coronary disease. Metabolism. 2000;49:245–252. doi: 10.1016/S0026-0495(00)91507-5.
    1. Reaven GM. Relationships among insulin resistance, type 2 diabetes, essential hypertension, and cardiovascular disease: similarities and differences. J Clin Hypertens (Greenwich). 2011;13:238–243. doi: 10.1111/j.1751-7176.2011.00439.x.
    1. Morimoto K, Morikawa M, Kimura H, et al. Mental stress induces sustained elevation of blood pressure and lipid peroxidation in postmenopausal women. Life Sci. 2008;82:99–107. doi: 10.1016/j.lfs.2007.10.018.
    1. Pickering TG. Mental stress as a causal factor in the development of hypertension and cardiovascular disease. Curr Hypertens Rep. 2001;3:249–254. doi: 10.1007/s11906-001-0047-1.
    1. Esler M, Eikelis N, Schlaich M, et al. Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress. Clin Exp Pharmacol Physiol. 2008;35:498–502. doi: 10.1111/j.1440-1681.2008.04904.x.
    1. Soucek M, Kara T. Stress-induced hypertension and diabetes mellitus. Vnitr Lek. 2001;47:315–319.
    1. Seematter G, Guenat E, Schneiter P, et al. Effects of mental stress on insulin-mediated glucose metabolism and energy expenditure in lean and obese women. Am J Physiol Endocrinol Metab. 2000;279:E799–805.
    1. Schnall PL, Pieper C, Schwartz JE, et al. The relationship between job strain, workplace diastolic blood-pressure, and left-ventricular mass index - results of a case-control study. Jama-J Am Med Assoc. 1990;263:1929–1935. doi: 10.1001/jama.1990.03440140055031.
    1. Jonas BS, Franks P, Ingram DD. Are symptoms of anxiety and depression risk factors for hypertension? Longitudinal evidence from the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Arch Fam Med. 1997;6:43–49. doi: 10.1001/archfami.6.1.43.
    1. Kario K, Ohashi T. After a major earthquake, stroke death occurs more frequently than coronary heart disease death in very old subjects. J Am Geriatr Soc. 1998;46:537–538.
    1. Kario K, Ohashi T. Increased coronary heart disease mortality after the Hanshin-Awaji earthquake among the older community on Awaji Island. J Am Geriatr Soc. 1997;45:610–613.
    1. Miller TQ, Smith TW, Turner CW, et al. A meta-analytic review of research on hostility and physical health. Psychol Bull. 1996;119:322–348. doi: 10.1037/0033-2909.119.2.322.
    1. Chapuis B, Vidal-Petiot E, Orea V, et al. Linear modelling analysis of baroreflex control of arterial pressure variability in rats. J Physiol. 2004;559:639–649. doi: 10.1113/jphysiol.2004.065474.
    1. Barrett CJ, Ramchandra R, Guild SJ, et al. What sets the long-term level of renal sympathetic nerve activity: a role for angiotensin II and baroreflexes? Circ Res. 2003;92:1330–1336. doi: 10.1161/01.RES.0000078346.60663.A0.
    1. McDowall LM, Horiuchi J, Killinger S, et al. Modulation of the baroreceptor reflex by the dorsomedial hypothalamic nucleus and perifornical area. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1020–1026. doi: 10.1152/ajpregu.00541.2005.
    1. Julien C, Saul JP, Parati G. Very low frequency blood pressure fluctuations: not only myogenic responsiveness. J Hypertens. 2008;26:1065–1068. doi: 10.1097/HJH.0b013e3283026068.
    1. Kanbar R, Orea V, Chapuis B, et al. A transfer function method for the continuous assessment of baroreflex control of renal sympathetic nerve activity in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1938–1946. doi: 10.1152/ajpregu.00374.2007.
    1. Bachen EA, Muldoon MF, Matthews KA, et al. Effects of hemoconcentration and sympathetic activation on serum lipid responses to brief mental stress. Psychosom Med. 2002;64:587–594. doi: 10.1097/01.PSY.0000021943.35402.8A.
    1. Bjorntorp P. Visceral fat accumulation: the missing link between psychosocial factors and cardiovascular disease? J Intern Med. 1991;230:195–201. doi: 10.1111/j.1365-2796.1991.tb00431.x.
    1. Pickering T. Cardiovascular pathways: socioeconomic status and stress effects on hypertension and cardiovascular function. Ann N Y Acad Sci. 1999;896:262–277. doi: 10.1111/j.1749-6632.1999.tb08121.x.
    1. Narkiewicz K. Obesity-related hypertension: relevance of vascular responses to mental stress. J Hypertens. 2002;20:1277–1278. doi: 10.1097/00004872-200207000-00009.
    1. Bjorntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S80–85. doi: 10.1038/sj.ijo.0801285.
    1. Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20:537–544. doi: 10.2337/diacare.20.4.537.
    1. Eriksson KF, Lindgarde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmo feasibility study. Diabetologia. 1991;34:891–898. doi: 10.1007/BF00400196.
    1. Laaksonen DE, Lindstrom J, Lakka TA, et al. Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes. 2005;54:158–165. doi: 10.2337/diabetes.54.1.158.
    1. Parker ED, Schmitz KH, Jacobs DR, Jr, et al. Physical activity in young adults and incident hypertension over 15 years of follow-up: the CARDIA study. Am J Public Health. 2007;97:703–709. doi: 10.2105/AJPH.2004.055889.
    1. Cederholm J, Wibell L. The relationship of blood pressure to blood glucose and physical leisure time activity. A study of hypertension in a survey of middle-aged subjects in Uppsala 1981-82. Acta Med Scand. 1986;219:37–46. doi: 10.1111/j.0954-6820.1986.tb03273.x.
    1. • Scott RA, Bailey ME, Moran CN, et al. FTO genotype and adiposity in children: physical activity levels influence the effect of the risk genotype in adolescent males. Eur J Hum Genet. 2010; 18: 1339–43. This article reported that in the GENESIS study, FTO genotype was only related to obesity in physically inactive males, highlighting physical activity as an important factor modifying the effect of FTO genotype.
    1. Lee HJ, Kim IK, Kang JH, et al. Effects of common FTO gene variants associated with BMI on dietary intake and physical activity in Koreans. Clin Chim Acta. 2010;411:1716–1722. doi: 10.1016/j.cca.2010.07.010.
    1. Sonestedt E, Gullberg B, Ericson U, et al. Association between fat intake, physical activity and mortality depending on genetic variation in FTO. Int J Obes (Lond). 2011;35:1041–1049.
    1. Ruiz JR, Labayen I, Ortega FB, et al. Attenuation of the effect of the FTO rs9939609 polymorphism on total and central body fat by physical activity in adolescents: the HELENA study. Arch Pediatr Adolesc Med. 2010;164:328–333.
    1. Fossum E, Gleim GW, Kjeldsen SE, et al. The effect of baseline physical activity on cardiovascular outcomes and new-onset diabetes in patients treated for hypertension and left ventricular hypertrophy: the LIFE study. Journal of Internal Medicine. 2007;262:439–448. doi: 10.1111/j.1365-2796.2007.01808.x.
    1. Mugo MN, Stump CS, Rao PG, et al. Hypertension and diabetes mellitus. In: Black HR, Elliott WJ, editors. Hypertension: A Companion to Braunwald's Heart Disease. Elsevier; 2007. p. 409.
    1. Cheung BM. Drug treatment for obesity in the post-sibutramine era. Drug Saf. 2011;34:641–650. doi: 10.2165/11592040-000000000-00000.

Source: PubMed

3
Subscribe