Targeting Refractory Sarcomas and Malignant Peripheral Nerve Sheath Tumors in a Phase I/II Study of Sirolimus in Combination with Ganetespib (SARC023)

AeRang Kim, Yao Lu, Scott H Okuno, Denise Reinke, Ophélia Maertens, John Perentesis, Mitali Basu, Pamela L Wolters, Thomas De Raedt, Sant Chawla, Rashmi Chugh, Brian A Van Tine, Geraldine O'Sullivan, Alice Chen, Karen Cichowski, Brigitte C Widemann, AeRang Kim, Yao Lu, Scott H Okuno, Denise Reinke, Ophélia Maertens, John Perentesis, Mitali Basu, Pamela L Wolters, Thomas De Raedt, Sant Chawla, Rashmi Chugh, Brian A Van Tine, Geraldine O'Sullivan, Alice Chen, Karen Cichowski, Brigitte C Widemann

Abstract

Purpose: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas. Combining Hsp90 inhibitors to enhance endoplasmic reticulum stress with mTOR inhibition results in dramatic MPNST shrinkage in a genetically engineered MPNST mouse model. Ganetespib is an injectable potent small molecule inhibitor of Hsp90. Sirolimus is an oral mTOR inhibitor. We sought to determine the safety, tolerability, and recommended dose of ganetespib and sirolimus in patients with refractory sarcomas and assess clinical benefits in patients with unresectable/refractory MPNSTs. Patients and Methods. In this multi-institutional, open-label, phase 1/2 study of ganetespib and sirolimus, patients ≥16 years with histologically confirmed refractory sarcoma (phase 1) or MPNST (phase 2) were eligible. A conventional 3 + 3 dose escalation design was used for phase 1. Pharmacokinetic and pharmacodynamic measures were evaluated. Primary objectives of phase 2 were to determine the clinical benefit rate (CBR) of this combination in MPNSTs. Patient-reported outcomes assessed pain.

Results: Twenty patients were enrolled (10 per phase). Toxicities were manageable; most frequent non-DLTs were diarrhea, elevated liver transaminases, and fatigue. The recommended dose of ganetespib was 200 mg/m2 intravenously on days 1, 8, and 15 with sirolimus 4 mg orally once daily with day 1 loading dose of 12 mg. In phase 1, one patient with leiomyosarcoma achieved a sustained partial response. In phase 2, no responses were observed. The median number of cycles treated was 2 (1-4). Patients did not meet the criteria for clinical benefit as defined per protocol. Pain ratings decreased or were stable.

Conclusion: Despite promising preclinical rationale and tolerability of the combination therapy, no responses were observed, and the study did not meet parameters for further evaluation in MPNSTs. This trial was registered with (NCT02008877).

Conflict of interest statement

D. Reinke reports grant from Department of Defense and other support from Synta Pharmaceuticals. P. Wolters reports holdings from Bristol-Meyers Squibb, Inc., and a grant from the Neurofibromatosis Therapeutic Acceleration Program outside the submitted work. S. Chawla reports other support from Amgen, Roche, GSK, Threshold Pharmaceuticals, CytRx Corporation, Ignyta, Immune Design, TRACON Pharma, Karyopharm Therapeutics, SARC, and Janssen outside the submitted work. R. Chugh reports grants from AADi, Novartis, Lilly, Medivation, Plexiconn, Pfizer, Advenchen, Morphotek, and Mabvax; grants and personal fees from Epizyme; and personal fees from Janssen and Immune Design outside the submitted work. Brian Van Tine reports grants from Pfizer and Merck and other support from Janssen, Epizyme Daiichi Sankyo, Blueprint Medicine, Immune Design, Janssen, Caris, and Lilly outside this work. No potential conflicts of interest were disclosed by the other authors.

Copyright © 2020 AeRang Kim et al.

Figures

Figure 1
Figure 1
Aggregate pharmacodynamic responses to ganetespib and sirolimus therapy.

References

    1. Evans D. G. R., Baser M. E., McGaughran J., Sharif S., Howard E., Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. Journal of Medical Genetics. 2002;39(5):311–314. doi: 10.1136/jmg.39.5.311.
    1. Kim A., Stewart D. R., Reilly K. M., Viskochil D., Miettinen M. M., Widemann B. C. Malignant peripheral nerve sheath tumors state of the science: leveraging clinical and biological insights into effective therapies. Sarcoma. 2017;2017:10. doi: 10.1155/2017/7429697.7429697
    1. Pisters P. W., Leung D. H., Woodruff J., Shi W., Brennan M. F. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. Journal of Clinical Oncology. 1996;14(5):1679–1689. doi: 10.1200/jco.1996.14.5.1679.
    1. Scaife C. L., Pisters P. W. T. Combined-modality treatment of localized soft tissue sarcomas of the extremities. Surgical Oncology Clinics of North America. 2003;12(2):355–368. doi: 10.1016/s1055-3207(03)00003-6.
    1. Gupta G., Mammis A., Maniker A. Malignant peripheral nerve sheath tumors. Neurosurgery Clinics of North America. 2008;19(4):533–543. doi: 10.1016/j.nec.2008.07.004.
    1. Uusitalo E., Rantanen M., Kallionpää R. A., et al. Distinctive cancer associations in patients with neurofibromatosis type 1. Journal of Clinical Oncology. 2016;34(17):1978–1986. doi: 10.1200/jco.2015.65.3576.
    1. Cichowski K., Jacks T. NF1 tumor suppressor gene function. Cell. 2001;104(4):593–604. doi: 10.1016/s0092-8674(01)00245-8.
    1. Johannessen C. M., Reczek E. E., James M. F., Brems H., Legius E., Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proceedings of the National Academy of Sciences. 2005;102(24):8573–8578. doi: 10.1073/pnas.0503224102.
    1. Johannessen C. M., Johnson B. W., Williams S. M. G., et al. TORC1 is essential for NF1-associated malignancies. Current Biology. 2008;18(1):56–62. doi: 10.1016/j.cub.2007.11.066.
    1. Ron D., Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology. 2007;8(7):519–529. doi: 10.1038/nrm2199.
    1. Denoyelle C., Abou-Rjaily G., Bezrookove V., et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biology. 2006;8(10):1053–1063. doi: 10.1038/ncb1471.
    1. De Raedt T., Walton Z., Yecies J. L., et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell. 2011;20(3):400–413. doi: 10.1016/j.ccr.2011.08.014.
    1. Proia D. A., Bates R. C. Ganetespib and HSP90: translating preclinical hypotheses into clinical promise. Cancer Research. 2014;74(5):1294–1300. doi: 10.1158/0008-5472.can-13-3263.
    1. Napoli K. L., Taylor P. J. From beach to bedside: history of the development of sirolimus. Therapeutic Drug Monitoring. 2001;23(5):559–586. doi: 10.1097/00007691-200110000-00012.
    1. Liu M., Howes A., Lesperance J., et al. Antitumor activity of rapamycin in a transgenic mouse model of ErbB2-dependent human breast cancer. Cancer Research. 2005;65(12):5325–5336. doi: 10.1158/0008-5472.can-04-4589.
    1. Namba R., Young L. J. T., Abbey C. K., et al. Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of ductal carcinoma in situ. Clinical Cancer Research. 2006;12(8):2613–2621. doi: 10.1158/1078-0432.ccr-05-2170.
    1. Martins A. S., Ordonez J. L., Garcia-Sanchez A., et al. A pivotal role for heat shock protein 90 in ewing sarcoma resistance to anti-insulin-like growth factor 1 receptor treatment: in vitro and in vivo study. Cancer Research. 2008;68(15):6260–6270. doi: 10.1158/0008-5472.can-07-3074.
    1. McCleese J. K., Bear M. D., Fossey S. L., et al. The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. International Journal of Cancer. 2009;125(12):2792–2801. doi: 10.1002/ijc.24660.
    1. Gazitt Y., Kolaparthi V., Moncada K., Thomas C., Freeman J. Targeted therapy of human osteosarcoma with 17AAG or rapamycin: characterization of induced apoptosis and inhibition of mTOR and Akt/MAPK/Wnt pathways. International Journal of Oncology. 2009;34(2):551–561. doi: 10.3892/ijo_00000181.
    1. Lesko E., Gozdzik J., Kijowski J., Jenner B., Wiecha O., Majka M. HSP90 antagonist, geldanamycin, inhibits proliferation, induces apoptosis and blocks migration of rhabdomyosarcoma cells in vitro and seeding into bone marrow in vivo. Anti-Cancer Drugs. 2007;18(10):1173–1181. doi: 10.1097/cad.0b013e3282ef532d.
    1. Vemulapalli S., Mita A., Alvarado Y., Sankhala K., Mita M. The emerging role of mammalian target of rapamycin inhibitors in the treatment of sarcomas. Targeted Oncology. 2011;6(1):29–39. doi: 10.1007/s11523-011-0179-4.
    1. Miller A. B., Hoogstraten B., Staquet M., Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207–214. doi: 10.1002/1097-0142(19810101)47:1<207::aid-cncr2820470134>;2-6.
    1. National Institutes of Health consensus development conference statement: neurofibromatosis. Bethesda, MD, USA, July 13–15, 1987. Neurofibromatosis. 1988;1(3):172–178.
    1. Eisenhauer E. A., Therasse P., Bogaerts J., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) European Journal of Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Hawker G. A., Mian S., Kendzerska T., French M. Measures of adult pain: visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF) Arthritis Care & Research. 2011;63(S11):S240–S252. doi: 10.1002/acr.20543.
    1. Cleeland C. S., Ryan K. M. Pain assessment: global use of the Brief pain inventory. Annals of the Academy of Medicine, Singapore. 1994;23(2):129–138.
    1. Dworkin R. H., Turk D. C., Farrar J. T., et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain. 2005;113(1):9–19. doi: 10.1016/j.pain.2004.09.012.
    1. Dworkin R. H., Turk D. C., Wyrwich K. W., et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. The Journal of Pain. 2008;9(2):105–121. doi: 10.1016/j.jpain.2007.09.005.
    1. Goldman J. W., Raju R. N., Gordon G. A., et al. A first in human, safety, pharmacokinetics, and clinical activity phase I study of once weekly administration of the Hsp90 inhibitor ganetespib (STA-9090) in patients with solid malignancies. BMC Cancer. 2013;13:p. 152. doi: 10.1186/1471-2407-13-152.
    1. Goyal L., Wadlow R. C., Blaszkowsky L. S., et al. A phase I and pharmacokinetic study of ganetespib (STA-9090) in advanced hepatocellular carcinoma. Investigational New Drugs. 2015;33(1):128–137. doi: 10.1007/s10637-014-0164-8.
    1. Cercek A., Shia J., Gollub M., et al. Ganetespib, a novel Hsp90 inhibitor in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. Clinical Colorectal Cancer. 2014;13(4):207–212. doi: 10.1016/j.clcc.2014.09.001.
    1. Reilly K. M., Kim A., Blakely J., et al. Neurofibromatosis type 1-associated MPNST state of the science: outlining a research agenda for the future. JNCI: Journal of the National Cancer Institute. 2017;109(8) doi: 10.1093/jnci/djx124.djx124
    1. Herrmann K., Benz M. R., Czernin J., et al. 18F-FDG-PET/CT imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clinical Cancer Research. 2012;18(7):2024–2031. doi: 10.1158/1078-0432.ccr-11-2139.
    1. Khiewvan B., Macapinlac H. A., Lev D., et al. The value of 18F-FDG PET/CT in the management of malignant peripheral nerve sheath tumors. European Journal of Nuclear Medicine and Molecular Imaging. 2014;41(9):1756–1766. doi: 10.1007/s00259-014-2756-0.
    1. Soldatos T., Ahlawat S., Montgomery E., Chalian M., Jacobs M. A., Fayad L. M. Multiparametric assessment of treatment response in high-grade soft-tissue sarcomas with anatomic and functional MR imaging sequences. Radiology. 2016;278(3):831–840. doi: 10.1148/radiol.2015142463.
    1. Del Grande F., Subhawong T., Weber K., Aro M., Mugera C., Fayad L. M. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology. 2014;271(2):499–511. doi: 10.1148/radiol.13130844.

Source: PubMed

3
Subscribe