Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

Márcio Gerhardt Soeiro-de-Souza, Bruno F Pastorello, Cláudia da Costa Leite, Anke Henning, Ricardo A Moreno, Maria Concepción Garcia Otaduy, Márcio Gerhardt Soeiro-de-Souza, Bruno F Pastorello, Cláudia da Costa Leite, Anke Henning, Ricardo A Moreno, Maria Concepción Garcia Otaduy

Abstract

Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls.

Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm(3)) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program.

Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed.

Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis.

Trial registration: ClinicalTrials.gov NCT01237158.

Keywords: bipolar disorder; glutathione; lactate; mitochondrial disease; oxidative stress.

© The Author 2016. Published by Oxford University Press on behalf of CINP.

Figures

Figure 1.
Figure 1.
Magnetic resonance spectroscopy (MRS) voxel location in the sagittal plane. Size 20 x 20 x 45mm3.
Figure 2.
Figure 2.
Mean dorsal anterior cingulate cortex (dACC) levels of lactate (Lac) in bipolar disorder (BD) type I compared with healthy controls (HC).
Figure 3.
Figure 3.
Correlation between dorsal anterior cingulate cortex (dACC) levels of lactate (Lac) and glutathione (GSH) adjusted for age and gender.

References

    1. Abdalla DS, Monteiro HP, Oliveira JA, Bechara EJ. (1986) Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients. Clin Chem 32:805–807.
    1. Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LMV, Nardin P, Cunha ABN, Ceresér KM, Santin A, Gottfried C, Salvador M, Kapczinski F, Gonçalves CA. (2007) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529.
    1. Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, Walz JC, Bond DJ, Gonçalves CA, Young LT, Yatham LN. (2009) 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci 34:263–271.
    1. Andreazza AC, Shao L, Wang J-F, Young LT. (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368.
    1. Andreazza AC, Wang J-F, Salmasi F, Shao L, Young LT. (2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem 127:552–561.
    1. Banerjee U, Dasgupta A, Rout JK, Singh OP. (2012) Effects of lithium therapy on Na+-K+-ATPase activity and lipid peroxidation in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 37:56–61.
    1. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PVS, Amminger P, McGorry P, Malhi GS. (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817.
    1. Brady RO, Cooper A, Jensen JE, Tandon N, Cohen B, Renshaw P, Keshavan M, Ongür D. (2012) A longitudinal pilot proton MRS investigation of the manic and euthymic states of bipolar disorder. Transl Psychiatry 2:e160.
    1. Brown NC, Andreazza AC, Young LT. (2014) An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 218:61–68.
    1. Cavanagh JTO, Van Beck M, Muir W, Blackwood DHR. (2002) Case-control study of neurocognitive function in euthymic patients with bipolar disorder: an association with mania. Br J Psychiatry 180:320–326.
    1. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. (2001) Cramér-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14:278–283.
    1. Cecil KM, DelBello MP, Morey R, Strakowski SM. (2002) Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord 4:357–365.
    1. Chang K, Adleman N, Dienes K, Barnea-Goraly N, Reiss A, Ketter T. (2003) Decreased N-acetylaspartate in children with familial bipolar disorder. Biol Psychiatry 53:1059–1065.
    1. Chinnery PF, Schon EA. (2003) Mitochondria. J Neurol Neurosurg Psychiatr 74:1188–1199.
    1. Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. (2013) Risky alcohol use in young persons with emerging bipolar disorder is associated with increased oxidative stress. J Affect Disord 150:1238–1241.
    1. Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. (2014) The impact of alcohol and tobacco use on in vivo glutathione in youth with bipolar disorder: an exploratory study. J Psychiatr Res 55:59–67.
    1. Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. (2015) A longitudinal proton magnetic resonance spectroscopy study investigating oxidative stress as a result of alcohol and tobacco use in youth with bipolar disorder. J Affect Disord 175:481–487.
    1. Chu W-J, DelBello MP, Jarvis KB, Norris MM, Kim M-J, Weber W, Lee J-H, Strakowski SM, Adler CM. (2013) Magnetic resonance spectroscopy imaging of lactate in patients with bipolar disorder. Psychiatry Res 213:230–234.
    1. Clark L, Iversen SD, Goodwin GM. (2002) Sustained attention deficit in bipolar disorder. Br J Psychiatry 180:313–319.
    1. Dager SR, Friedman SD, Heide A, Layton ME, Richards T, Artru A, Strauss W, Hayes C, Posse S. (1999) Two-dimensional proton echo-planar spectroscopic imaging of brain metabolic changes during lactate-induced panic. Arch Gen Psychiatry 56:70–77.
    1. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF. (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458.
    1. de Sousa RT, Zarate CA, Zanetti MV, Costa AC, Talib LL, Gattaz WF, Machado-Vieira R. (2014) Oxidative stress in early stage bipolar disorder and the association with response to lithium. J Psychiatr Res 50:36–41.
    1. Dringen R. (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671.
    1. DSM-IV PATFO (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Publishing, Inc.
    1. Fan T. (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Mag Reson Spectrosc:161–219.
    1. Ferrier IN, Thompson JM. (2002) Cognitive impairment in bipolar affective disorder: implications for the bipolar diathesis. Br J Psychiatry 180:293–295.
    1. First MB, Spitzer RL, Williams JB. (1996) Structured clinical interview for DSM-IV axis I disorders SCID-I. Washington, DC: American Psychiatric Press.
    1. Frahm J, Krüger G, Merboldt KD, Kleinschmidt A. (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148.
    1. Fuchs A, Boesiger P, Schulte RF, Henning A. (2013) ProFit revisited. Magn Reson Med 71:458–468.
    1. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse S, Jung RE, Morrison LA. (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 55:1219–1226.
    1. Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT. (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–130.
    1. Godlewska BR, Yip SW, Near J, Goodwin GM, Cowen PJ. (2014) Cortical glutathione levels in young people with bipolar disorder: a pilot study using magnetic resonance spectroscopy. Psychopharmacology (Berl) 231:327–332.
    1. Govindaraju V, Young K, Maudsley AA. (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153.
    1. Gutteridge JM, Halliwell B. (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899:136–147.
    1. Hamilton M. (1960) A rating scale for depression. J Neurol Neurosurg Psychiatr 23:56–62.
    1. Kato T, Takahashi S, Shioiri T, Inubushi T. (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26:223–230.
    1. Kato T, Takahashi S, Shioiri T, Inubushi T. (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59.
    1. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308.
    1. Kreis R. (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381.
    1. Kreis R. (2016) The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn Reson Med 75:15–18.
    1. Kreis R, Kyathanally S. eds. (2015) Don’t use relative Cramer Rao lower bounds for elimination of low quality data! MRS Processing and Quantification. Poster 1976, 23rd ed. Toronto: Available at: .
    1. Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N. (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20:171–175.
    1. Lagopoulos J, Hermens DF, Tobias-Webb J, Duffy S, Naismith SL, White D, Scott E, Hickie IB. (2013) In vivo glutathione levels in young persons with bipolar disorder: a magnetic resonance spectroscopy study. J Psychiatr Res 47:412–417.
    1. Li M, Metzger CD, Li W, Safron A, van Tol M-J, Lord A, Krause AL, Borchardt V, Dou W, Genz A, Heinze H-J, He H, Walter M. (2014) Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169: 91–100.
    1. Lyoo IK, Sung YH, Dager SR, Friedman SD, Lee J-Y, Kim SJ, Kim N, Dunner DL, Renshaw PF. (2006) Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord 8:65–74.
    1. Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V, da Silva Vargas R, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V. (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36.
    1. Michels L, Schulte-Vels T, Schick M, O’Gorman RL, Zeffiro T, Hasler G, Mueller-Pfeiffer C. (2014) Prefrontal GABA and glutathione imbalance in posttraumatic stress disorder: preliminary findings. Psychiatry Res 224:288–295.
    1. Mlynárik V, Gruber S, Moser E. (2001) Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331.
    1. Moore GJ, Galloway MP. (2002) Magnetic resonance spectroscopy: neurochemistry and treatment effects in affective disorders. Psychopharmacol Bull 36:5–23.
    1. Moreira MT, Smith LA, Foxcroft D. (2009) Social norms interventions to reduce alcohol misuse in university or college students. Cochrane Database Syst Rev:CD006748.
    1. Orth M, Schapira AH. (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36.
    1. Provencher SWS. (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679.
    1. Raffa M, Barhoumi S, Atig F, Fendri C, Kerkeni A, Mechri A. (2012) Reduced antioxidant defense systems in schizophrenia and bipolar I disorder. Prog Neuropsychopharmacol Biol Psychiatry 39:371–375.
    1. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA. (2009) Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry 65:489–494.
    1. Rudkin TM, Arnold DL. (1999) Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol 56:919–926.
    1. Schulte RF, Boesiger P. (2006) ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed 19:255–263.
    1. Schulte RF, Lange T, Beck J, Meier D, Boesiger P. (2006) Improved two-dimensional J-resolved spectroscopy. NMR Biomed 19:264–270.
    1. Schurr A. (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 26:142–152.
    1. Shanske AL, Shanske S, DiMauro S. (2001) The other human genome. Arch Pediatr Adolesc Med 155:1210–1216.
    1. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC. (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33; quiz34–quiz57.
    1. Smith SA, Levante TO, de Beer R, Luyten PR, van Ormondt D. (1994) Computer simulations in magnetic resonance. An object-oriented programming approach. J Magn Reson A:75–105.
    1. Soeiro de Souza MG, Salvadore G, Moreno RA, Otaduy MCG, Chaim KT, Gattaz WF, Zarate CA, Machado-Vieira R. (2013) Bcl-2 rs956572 Polymorphism is associated with increased anterior cingulate cortical glutamate in euthymic bipolar I disorder. Neuropsychopharmacology 38:468–475.
    1. Soeiro-de-Souza MG, Andreazza AC, Carvalho AF, Machado-Vieira R, Young LT, Moreno RA. (2013) Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder. Int J Neuropsychopharmacol 16:1505–1512.
    1. Soeiro de Souza MG, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa Leite C, Vallada H, Otaduy MCG. (2015) Anterior cingulate Glutamate-Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol 25:2221–2229.
    1. Stork C, Renshaw PF. (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919.
    1. Sun X, Wang J-F, Tseng M, Young LT. (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196.
    1. Tkác I, Starcuk Z, Choi IY, Gruetter R. (1999) In vivo 1H NMR spectroscopy of rat brain at 1ms echo time. Magn Reson Med 41:649–656.
    1. van der Veen JW, de Beer R, Luyten PR, van Ormondt D. (1988) Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 6:92–98.
    1. Wijtenburg SA, Yang S, Fischer BA, Rowland LM. (2015) In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia. Neurosci Biobehav Rev 51:276–295.
    1. Xu J, Dydak U, Harezlak J, Nixon J, Dzemidzic M, Gunn AD, Karne HS, Anand A. (2013) Neurochemical abnormalities in unmedicated bipolar depression and mania: a 2D 1H MRS investigation. Psychiatry Res 213:235–241.
    1. Young RC, Biggs JT, Ziegler VE, Meyer DA. (1978) A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry 133:429–435.
    1. Yüksel C, Ongur D. (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68:785–794.
    1. Zhang Y, Brady M, Smith S. (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57.
    1. Zoelch N, Hock A, Scheidegger M, Hulka L, Quednow B, Henning A. eds. (2015) Necessity of tissue volume composition correction for internal referencing - MRS Processing and Quantification. Poster 1977, 23rd ed. Toronto: Available at: .

Source: PubMed

3
Subscribe