A contemporary approach to body mass regulation mechanisms

Andrzej Nowak, Elżbieta Czkwianianc, Andrzej Nowak, Elżbieta Czkwianianc

Abstract

Recently, a lot of factors and mechanisms regulating body mass have been discovered, although there are still many unknowns. Their effect on the development of many diseases related to nutritional disorders (obesity, anorexia, celiac disease, inflammatory bowel disease) means that the understanding of these mechanisms will make it possible to determine new therapeutic goals and create new medicinal products. This is even more important because nowadays there is no effective medication to cure nutritional disorders. It is necessary to conduct further research to evaluate dependencies and relationships between particular hormones and to study newly discovered substances so that we could progress towards achieving the overall objectives while keeping the ultimate goals in mind.

Keywords: ghrelin; neuropeptide Y; orexigenic factors.

References

    1. Nogueiras R, Tschöp M, Zigman J. CNS regulation of energy metabolism: ghrelin versus leptin. Ann N Y Acad D Sci. 2008;1126:14–9.
    1. Cone RD, Cowley MA, Butler AA, et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord. 2001;25(Suppl. 5):S63–7.
    1. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.
    1. Broadwell RD, Brightman MW. Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol. 1976;166:257–83.
    1. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1:271–2.
    1. Shutter JR, Graham M, Kinsey AC, et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 1997;11:593–602.
    1. Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21:1375–85.
    1. Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393:72–6.
    1. Minor RK, Chang JW, de Cabo R. Hungry for life: how the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol Cell Endocrinol. 2009;299:79–88.
    1. Cummings D, Purnell J, Frayo R, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.
    1. Qian S, Chen H, Weingarth D, et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol. 2002;22:5027–35.
    1. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.
    1. Chang GQ, Karatayev O, Ahsan R, et al. Dietary fat stimulates endogenous enkephalin and dynorphin in the paraventricular nucleus: role of circulating triglycerides. Am J Physiol Endocrinol Metab. 2007;292:E561–70.
    1. Cisowska A, Ciosek J. Galanina – biosynteza, receptory i kierunki działania. Endokrynol Pol. 2003;6:776–83.
    1. Jawiarczyk A, Bolanowski M. Oreksyny – neuropeptydy o działaniu plejotropowym. Endokrynol Otyłość i Zaburzenia Przemiany Materii. 2010;6:147–53.
    1. Lockie SH, Dinan T, Lawrence AJ, et al. Diet-induced obesity causes ghrelin resistance in reward processing tasks. Psychoneuroendocrinology. 2015;62:114–20.
    1. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY (3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.
    1. Polińska B, Matowicka-Karna J, Kemona H. Rola greliny w organizmie. Postep Hig Med Dosw. 2011;65:1–7.
    1. Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822–5.
    1. Horvath TL. Endocannabinoids and the regulation of body fat: the smoke is clearing. J Clin Invest. 2003;112:323–6.
    1. Anamthathmakula P, Sahu M, Sahu A. Evidence suggesting phosphodiesterase-3B regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons. Neurosci Lett. 2015;604:113–8.
    1. Könner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav. 2009;97:632–8.
    1. Kocełak P, Zahorska-Markiewicz B, Olszanecka-Glinianowicz M. Hormonalna regulacja przyjmowania pokarmu. Endokrynol Pol. 2009;60:296–301.
    1. Otto-Buczkowska E, Mazur-Dworzecka U, Dworzecki T. Rola amyliny w utrzymaniu homeostazy glukozy i perspektywy jej zastosowania w terapii cukrzycy. Przegl Lek. 2008;65:135–9.
    1. Ding X, Saxena N, Lin S, et al. Exendin-4, a glucagon-like protein-1 receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology. 2006;43:173–81.
    1. Nylec M, Olszanecka-Glinianowicz M. Mało znane nowe ogniwa regulacji poboru pokarmu. Postep Hig Med Dosw. 2010;64:291–5.
    1. Lihn A, Pedersen S, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6:13–21.
    1. Klöting N, Kovacs P, Kern M, et al. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects. Diabetologia. 2011;54:1819–23.
    1. Ziora K, Suwała A, Ziora-Jakutowicz K. Waspina – nowy hormon tkanki tłuszczowej. Endokrynol Ped. 2012;13:59–66.
    1. Szlachcic A, Surmiak M, Majka J, Brzozowski T. Nesfatin-1: a new hormone in the control of food intake and the mechanism of damage and protection of gastric muc osa. Prz Gastroenterol. 2012;7:339–50.

Source: PubMed

3
Subscribe