Characterization of Serous Retinopathy Associated with Cobimetinib: Integrated Safety Analysis of Four Studies

Giulio Barteselli, Grant R Goodman, Yogesh Patel, Ivor Caro, Cloris Xue, Samuel McCallum, Giulio Barteselli, Grant R Goodman, Yogesh Patel, Ivor Caro, Cloris Xue, Samuel McCallum

Abstract

Introduction and objective: Serous retinopathy can be associated with MEK inhibitors, including cobimetinib. We present results of an integrated safety analysis to further characterize ocular functional and structural changes due to serous retinopathy.

Methods: Four studies evaluating cobimetinib at the approved dose and schedule in combination with other oncology drugs were included. Study CO39721 incorporated standardized ophthalmologic assessments to fully characterize serous retinopathy events over time and was the primary study for analysis. Supporting information was provided by studies GO28141, WO29479, and GO30182.

Results: In total, 655 patients received one or more doses of cobimetinib and comprised the safety-evaluable population. Overall, 117 patients (17.9%) had one or more serous retinopathy events, 24 (3.7%) had two or more events, and four (0.6%) had three or more events. Grade 3 events occurred in < 2.5% of patients. In CO39721, the median time to onset was 15 days (range 7-111); median time to resolution of first occurrence was 26 days (range 6-591 + days). Twelve of 25 patients (48.0%) recovered without a dose modification and 4/25 (16.0%) were recovered/recovering following a dose modification. The most frequent presentation of serous retinopathy was focal subretinal fluid on optical coherence tomography (62.8% of cases); in some instances (25.7% of cases), subretinal fluid was multifocal. There was no loss of visual function or visual acuity at serous retinopathy onset or resolution.

Conclusions: Results from this integrated safety analysis indicate that cobimetinib-associated serous retinopathy can be managed with or without a dose modification of cobimetinib at the discretion of the treating physician. No visual loss or permanent retinal damage was identified on comprehensive ophthalmologic assessments.

Clinical trial registration: ClinicalTrials.gov identifiers: NCT03178851, NCT01689519, NCT02322814, and NCT02788279.

Conflict of interest statement

All authors are current or former employees of Roche/Genentech.

© 2022. The Author(s).

References

    1. Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK network as a therapeutic target in human cancer. Mol Cancer Res. 2021;19(3):361–374. doi: 10.1158/1541-7786.MCR-20-0687.
    1. Tatli O, Dinler DG. Recent developments in targeting RAS downstream effectors for RAS-driven cancer therapy. Molecules. 2021;26(24):7561. doi: 10.3390/molecules26247561.
    1. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–1876. doi: 10.1056/NEJMoa1408868.
    1. Ascierto PA, McArthur GA, Dreno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17(9):1248–1260. doi: 10.1016/S1470-2045(16)30122-X.
    1. van der Noll R, Leijen S, Neuteboom GH, Beijnen JH, Schellens JH. Effect of inhibition of the FGFR-MAPK signaling pathway on the development of ocular toxicities. Cancer Treat Rev. 2013;39(6):664–672. doi: 10.1016/j.ctrv.2013.01.003.
    1. Francis JH, Habib LA, Abramson DH, Yannuzzi LA, Heinemann M, Gounder MM, et al. Clinical and morphologic characteristics of MEK inhibitor-associated retinopathy: differences from central serous chorioretinopathy. Ophthalmology. 2017;124(12):1788–1798. doi: 10.1016/j.ophtha.2017.05.038.
    1. Urner-Bloch U, Urner M, Jaberg-Bentele N, Frauchiger AL, Dummer R, Goldinger SM. MEK inhibitor-associated retinopathy (MEKAR) in metastatic melanoma: long-term ophthalmic effects. Eur J Cancer. 2016;65:130–138. doi: 10.1016/j.ejca.2016.06.018.
    1. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–114. doi: 10.1056/NEJMoa1203421.
    1. Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C, et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):773–781. doi: 10.1016/S1470-2045(12)70270-X.
    1. Bendell JC, Javle M, Bekaii-Saab TS, Finn RS, Wainberg ZA, Laheru DA, et al. A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor. Br J Cancer. 2017;116(5):575–583. doi: 10.1038/bjc.2017.10.
    1. Ascierto PA, Schadendorf D, Berking C, Agarwala SS, van Herpen CM, Queirolo P, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013;14(3):249–256. doi: 10.1016/S1470-2045(13)70024-X.
    1. Weekes CD, Von Hoff DD, Adjei AA, Leffingwell DP, Eckhardt SG, Gore L, et al. Multicenter phase I trial of the mitogen-activated protein kinase 1/2 inhibitor BAY 86–9766 in patients with advanced cancer. Clin Cancer Res. 2013;19(5):1232–1243. doi: 10.1158/1078-0432.CCR-12-3529.
    1. Urner-Bloch U, Urner M, Stieger P, Galliker N, Winterton N, Zubel A, et al. Transient MEK inhibitor-associated retinopathy in metastatic melanoma. Ann Oncol. 2014;25(7):1437–1441. doi: 10.1093/annonc/mdu169.
    1. Jiang Q, Cao C, Lu S, Kivlin R, Wallin B, Chu W, et al. MEK/ERK pathway mediates UVB-induced AQP1 downregulation and water permeability impairment in human retinal pigment epithelial cells. Int J Mol Med. 2009;23(6):771–777. doi: 10.3892/ijmm_00000191.
    1. de la Cruz-Merino L, Di Guardo L, Grob JJ, Venosa A, Larkin J, McArthur GA, et al. Clinical features of serous retinopathy observed with cobimetinib in patients with BRAF-mutated melanoma treated in the randomized coBRIM study. J Transl Med. 2017;15(1):146. doi: 10.1186/s12967-017-1246-0.
    1. Sandhu SK, Atkinson VG, Cao MG, Medina T, Rivas AS, Caro I, et al. 1358P—interim analysis of a phase Ib study of cobimetinib plus atezolizumab in patients with advanced BRAFV600 wild type melanoma progressing on prior anti-PD-L1 therapy. Ann Oncol. 2019;30(Suppl._5):554. doi: 10.1093/annonc/mdz255.046.
    1. Brufsky A, Kim SB, Zvirbule Ž, Eniu A, Mebis J, Sohn JH, et al. A phase II randomized trial of cobimetinib plus chemotherapy, with or without atezolizumab, as first-line treatment for patients with locally advanced or metastatic triple-negative breast cancer (COLET): primary analysis. Ann Oncol. 2021;32(5):652–660. doi: 10.1016/j.annonc.2021.01.065.
    1. Eng C, Kim TW, Bendell J, Argiles G, Tebbutt NC, Di Bartolomeo M, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019;20(6):849–861. doi: 10.1016/S1470-2045(19)30027-0.
    1. Méndez-Martínez S, Calvo P, Ruiz-Moreno O, Pardiñas Barón N, Leciñena Bueno J, Gil Ruiz MDR, et al. Ocular adverse events associated with MEK inhibitors. Retina. 2019;39(8):1435–1450. doi: 10.1097/IAE.0000000000002451.
    1. Fortes BH, Tailor PD, Dalvin LA. Ocular toxicity of targeted anticancer agents. Drugs. 2021;81(7):771–823. doi: 10.1007/s40265-021-01507-z.
    1. Gogas HJ, Flaherty KT, Dummer R, Ascierto PA, Arance A, Mandala M, et al. Adverse events associated with encorafenib plus binimetinib in the COLUMBUS study: incidence, course and management. Eur J Cancer. 2019;119:97–106. doi: 10.1016/j.ejca.2019.07.016.
    1. Liu B, Deng T, Zhang J. Risk factors for central serous chorioretinopathy: a systematic review and meta-analysis. Retina. 2016;36(1):9–19. doi: 10.1097/IAE.0000000000000837.
    1. Ojaimi E, Nguyen TT, Klein R, Islam FM, Cotch MF, Klein BE, et al. Retinopathy signs in people without diabetes: the multi-ethnic study of atherosclerosis. Ophthalmology. 2011;118(4):656–662. doi: 10.1016/j.ophtha.2010.08.007.
    1. Chao JR, Lai MY, Azen SP, Klein R, Varma R. Retinopathy in persons without diabetes: the Los Angeles Latino Eye Study. Investig Ophthalmol Vis Sci. 2007;48(9):4019–4025. doi: 10.1167/iovs.07-0206.
    1. Jeganathan VS, Cheung N, Tay WT, Wang JJ, Mitchell P, Wong TY. Prevalence and risk factors of retinopathy in an Asian population without diabetes: the Singapore Malay Eye Study. Arch Ophthalmol. 2010;128(1):40–45. doi: 10.1001/archophthalmol.2009.330.
    1. van Leiden HA, Dekker JM, Moll AC, Nijpels G, Heine RJ, Bouter LM, et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch Ophthalmol. 2003;121(2):245–251. doi: 10.1001/archopht.121.2.245.
    1. Gunnlaugsdottir E, Halldorsdottir S, Klein R, Eiriksdottir G, Klein BE, Benediktsson R, et al. Retinopathy in old persons with and without diabetes mellitus: the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-R) Diabetologia. 2012;55(3):671–680. doi: 10.1007/s00125-011-2395-y.

Source: PubMed

3
Subscribe