The Application of Brain-Computer Interface in Upper Limb Dysfunction After Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Yang Peng, Jing Wang, Zicai Liu, Lida Zhong, Xin Wen, Pu Wang, Xiaoqian Gong, Huiyu Liu, Yang Peng, Jing Wang, Zicai Liu, Lida Zhong, Xin Wen, Pu Wang, Xiaoqian Gong, Huiyu Liu

Abstract

Objective: This study aimed to examine the effectiveness and safety of the Brain-computer interface (BCI) in treatment of upper limb dysfunction after stroke.

Methods: English and Chinese electronic databases were searched up to July 2021. Randomized controlled trials (RCTs) were eligible. The methodological quality was assessed using Cochrane's risk-of-bias tool. Meta-analysis was performed using RevMan 5.4.

Results: A total of 488 patients from 16 RCTs were included. The results showed that (1) the meta-analysis of BCI-combined treatment on the improvement of the upper limb function showed statistical significance [standardized mean difference (SMD): 0.53, 95% CI: 0.26-0.80, P < 0.05]; (2) BCI treatment can improve the abilities of daily living of patients after stroke, and the analysis results are statistically significant (SMD: 1.67, 95% CI: 0.61-2.74, P < 0.05); and (3) the BCI-combined therapy was not statistically significant for the analysis of the Modified Ashworth Scale (MAS) (SMD: -0.10, 95% CI: -0.50 to 0.30, P = 0.61).

Conclusion: The meta-analysis indicates that the BCI therapy or BCI combined with other therapies such as conventional rehabilitation training and motor imagery training can improve upper limb dysfunction after stroke and enhance the quality of daily life.

Keywords: BCI; brain-computer interface; meta-analysis; stroke; upper limb dysfunction.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Peng, Wang, Liu, Zhong, Wen, Wang, Gong and Liu.

Figures

FIGURE 1
FIGURE 1
Flowchart of the trial selection process.
FIGURE 2
FIGURE 2
Graph of the risk of bias: percentage across all included studies.
FIGURE 3
FIGURE 3
Summary of the risk of bias: review authors’ judgments about each risk-of-bias item in each included study. “+,” low risk of bias; “?,” unclear risk of bias; “–,” high risk of bias.
FIGURE 4
FIGURE 4
Forest plot of the Fugl-Meyer Assessment (FMA) score to evaluate the effect of brain-computer interface (BCI) on upper limb dysfunction after stroke.
FIGURE 5
FIGURE 5
Forest plot of the FMA score after omitting Xianwen Xiang’s study to evaluate the effect of BCI on upper limb dysfunction after stroke.
FIGURE 6
FIGURE 6
Forest plot of the Modified Barthel Index (MBI) score to evaluate the effect of BCI on upper limb dysfunction after stroke.
FIGURE 7
FIGURE 7
Modified Ashworth Scale (MAS) to evaluate the effect of BCI on upper limb dysfunction after stroke.

References

    1. Ang K. K., Chua K. S., Phua K. S., Wang C., Chin Z. Y., Kuah C. W., et al. (2015). Trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46 310–320. 10.1177/1550059414522229
    1. Ang K. K., Guan C., Chua K. S., Ang B. T., Kuah C. W., Wang C., et al. (2011). A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface. Clin. EEG Neurosci. 42 253–258. 10.1177/155005941104200411
    1. Bai Z., Fong K. N. K., Zhang J. J., Chan J., Ting K. H. (2020). Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J. NeuroengRehabil. 17:57. 10.1186/s12984-020-00686-2
    1. Biasiucci A., Leeb R., Iturrate I., Perdikis S., Al-Khodairy A., Corbet T., et al. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9:2421. 10.1038/s41467-018-04673-z
    1. Bolognini N., Vallar G., Casati C., Latif L. A., El-Nazer R., Williams J., et al. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil. Neural. Repair. 25 819–829. 10.1177/1545968311411056
    1. Chen S., Cao L., Shu X., Wang H., Ding L., Wang S. H., et al. (2020). Longitudinal electroencephalography analysis in subacute stroke patients during intervention of brain-computer interface with exoskeleton feedback. Front. Neurosci. 14:809. 10.3389/fnins.2020.00809
    1. Cumpston M., Li T., Page M. J., Chandler J., Welch V. A., Higgins J. P., et al. (2019). Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of interventions. Cochrane. Database Syst. Rev. 10:142. 10.1002/14651858.ED000142
    1. Daly J. J., Wolpaw J. R. (2008). Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 7 1032–1043. 10.1016/S1474-4422(08)70223-0
    1. Feigin V. L., Forouzanfar M. H., Krishnamurthi R., Mensah G. A., Connor M., Bennett D. A. (2014). Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010. Lancet 383 245–254.
    1. Frolov A. A., Mokienko O., Lyukmanov R., Biryukova E., Kotov S., Turbina L., et al. (2017). Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-Controlled hand exoskeleton: a randomized controlled multicenter trial. Front. Neurosci. 11:400. 10.3389/fnins.2017.00400
    1. Hai R., Zhiming X. (2020). Effect of Brain-Computer Interface technology on upper limb motor function rehabilitation for stroke patients. China Pract. Med. 15 181–183.
    1. Jacquin-Courtois S. (2015). Hemi-spatial neglect rehabilitation using non-invasive brain stimulation: or how to modulate the disconnection syndrome? Ann. PhysRehabil. Med. 58 251–258. 10.1016/j.rehab.2015.07.388
    1. Jang Y. Y., Kim T. H., Lee B. H. (2016). Effects of brain-computer interface-controlled functional electrical stimulation training on shoulder subluxation for patients with stroke: a randomized controlled trial. OccupTherInt 23 175–185. 10.1002/oti.1422
    1. Kim T., Kim S., Lee B. (2016). Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. OccupTherInt 23 39–47. 10.1002/oti.1403
    1. Kruse A., Suica Z., Taeymans J., Schuster-Amft C. (2020). Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke - a systematic review and meta-analysis. BMC Neurol. 20:385. 10.1186/s12883-020-01960-5
    1. Lee S. H., Kim S. S., Lee B. H. (2020). Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial. Physiother. Theory Pract. 2020 1–9. 10.1080/09593985.2020.1831114
    1. Li M., Liu Y., Wu Y., Liu S., Jia J., Zhang L. (2014). Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training. Int. J. Neurosci. 124 403–415. 10.3109/00207454.2013.850082
    1. Lin C., Martin K., Arevalo Y. A., Harvey R. L., Prabhakaran S. (2021). Association of proportional recovery after stroke with health-related quality of life. Stroke 52 2968–2971. 10.1161/STROKEAHA.120.033672
    1. Lopez-Larraz E., Sarasola-Sanz A., Irastorza-Landa N., Birbaumer N., Ramos-Murguialday A. (2018). Brain-machine interfaces for rehabilitation in stroke: a review. NeuroRehabilitation 43 77–97. 10.3233/NRE-172394
    1. Mane R., Chew E., Phua K. S., Ang K. K., Robinson N., Vinod A. P., et al. (2019). Prognostic and monitory EEG-Biomarkers for BCI upper-limb stroke rehabilitation. IEEE Trans. Neural. SystRehabilEng. 27 1654–1664. 10.1109/TNSRE.2019.2924742
    1. Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Hino T., et al. (2013). Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 44 1091–1098. 10.1161/STROKEAHA.111.674507
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G., Group P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097.
    1. Montenegro R. A., Midgley A., Massaferri R., Bernardes W., Okano A. H., Farinatti P. (2016). Bihemispheric motor cortex transcranial direct current stimulation improves force steadiness in post-stroke hemiparetic patients: a randomized crossover controlled trial. Front. Hum. Neurosci. 10:426. 10.3389/fnhum.2016.00426
    1. Pichiorri F., Morone G., Petti M., Toppi J., Pisotta I., Molinari M., et al. (2015). Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77 851–865. 10.1002/ana.24390
    1. Qiantuo T., Tong Z. (2021). Rehabilitation effect of Functional Electrical Stimulation controlled by Brain-Computer Interface on upper limb dysfunction in stroke patients. Chin. J. Rehab. Theory Pract. 27 802–806.
    1. Ramos-Murguialday A., Curado M. R., Broetz D., Yilmaz O., Brasil F. L., Liberati G., et al. (2019). Brain-machine interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil. Neural. Repair. 33 188–198. 10.1177/1545968319827573
    1. Rayegani S. M., Raeissadat S. A., Sedighipour L., Rezazadeh I. M., Bahrami M. H., Eliaspour D., et al. (2014). Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients. Top Stroke Rehabil. 21 137–151. 10.1310/tsr2102-137
    1. Sawaki L., Butler A. J., Leng X., Wassenaar P. A., Mohammad Y. M., Blanton S., et al. (2014). Differential patterns of cortical reorganization following constraint-induced movement therapy during early and late period after stroke: a preliminary study. NeuroRehabilitation 35 415–426. 10.3233/NRE-141132
    1. Shimamura N., Katagai T., Kakuta K., Matsuda N., Katayama K., Fujiwara N., et al. (2017). Rehabilitation and the neural network after stroke. Transl. Stroke Res. 8 507–514.
    1. Shugeng C., Xiaokang S., Jie J. (2016). Research on hand function rehabilitation of stroke patients based on closed-loop brain computer interface. Chin. J. Rehabil. Med. 31 1189–1194.
    1. Sijie L., Yulian Z., Weining W., Min Z. (2020). Application of brain computer interface technology in the rehabilitation of upper limb dysfunction in stroke patients. Clin. Res. 35 185–188.
    1. Spuler M., Lopez-Larraz E., Ramos-Murguialday A. (2018). On the design of EEG-based movement decoders for completely paralyzed stroke patients. J. NeuroengRehabil. 15:110. 10.1186/s12984-018-0438-z
    1. Van de Port I. G., Wevers L., Roelse H., van Kats L., Lindeman E., Kwakkel G. (2009). Cost-effectiveness of a structured progressive task-oriented circuit class training programme to enhance walking competency after stroke: the protocol of the FIT-Stroke trial. BMC Neurol. 9:43. 10.1186/1471-2377-9-43
    1. Varkuti B., Guan C., Pan Y., Phua K. S., Ang K. K., Kuah C. W., et al. (2013). Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil. Neural. Repair. 27 53–62. 10.1177/1545968312445910
    1. Wang W., Collinger J. L., Perez M. A., Tyler-Kabara E. C., Cohen L. G., Birbaumer N., et al. (2010). Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. RehabilClin. N Am. 21 157–178. 10.1016/j.pmr.2009.07.003
    1. Xianwen X., Jiaying Z., Yuanbiao S., Fengyou S. (2020). Clinical study of Brain-Computer Interface in the treatment of upper limb dysfunction in the convalescent stage of ischemic stroke. Med. Innov. China 17 154–158.
    1. Ying X., Yanyun J., Jie J., Xiaomei W. (2018). Effect of Brain-Computer Interface combined with Functional Electrical Stimulation training on upper limb function and cognition in elderly stroke patients. Chin. J. Senile Cardiovas. Cereb. Dis. 20 988–990.

Source: PubMed

3
Subscribe