Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults

Jennifer C Richards, Matthew L Racine, Christopher M Hearon Jr, Megan Kunkel, Gary J Luckasen, Dennis G Larson, Jason D Allen, Frank A Dinenno, Jennifer C Richards, Matthew L Racine, Christopher M Hearon Jr, Megan Kunkel, Gary J Luckasen, Dennis G Larson, Jason D Allen, Frank A Dinenno

Abstract

Dietary nitrate (NO3-) is converted to nitrite (NO2-) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O2 environment. Accordingly, dietary NO3- increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO3- (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n = 11; 25 ± 2 years). FBF (Doppler ultrasound) and blood pressure (Finapres) were measured at rest and during graded handgrip exercise at 5%, 15%, and 25% maximal voluntary contraction (MVC) lasting 4 min each. At the highest workload (25% MVC), systemic hypoxia (80% SaO2 ) was induced and exercise continued for three additional minutes. Subjects ingested concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6) and repeated the exercise bout either 2 (12.6 mmol) or 3 h (16.8 mmol) postconsumption. Compared to control, BR significantly increased FBF at 15% MVC (184 ± 15 vs. 164 ± 15 mL/min), 25% MVC (323 ± 27 vs. 286 ± 28 mL/min), and 25% + hypoxia (373 ± 39 vs. 343 ± 32 mL/min) and this was due to increases in vascular conductance (i.e., vasodilation). The effect of BR on hemodynamics was not different between the two doses of BR ingested. Forearm VO2 was also elevated during exercise at 15% and 25% MVC. We conclude that acute increases in circulating NO3- and NO2- via BR increases muscle blood flow during moderate- to high-intensity handgrip exercise via local vasodilation. These findings may have important implications for aging and diseased populations that demonstrate impaired muscle perfusion and exercise intolerance.

Keywords: Dietary nitrate; exercise hyperemia; oxygen consumption.

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Study Timeline. Following venous catheter insertion and 30 min of quiet rest, participants performed graded handgrip exercise (5%, 15%, 25% maximal voluntary contraction [MVC]) for 4 min at each intensity. During 25% MVC, participants continued performing handgrip exercise for an additional 3 min while they underwent systemic hypoxia (80% SpO2). The blood flow response to graded exercise and hypoxic exercise was assesses in control conditions and following ingestion of 210 or 280 mL of concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6). Participants performed their second bout (beetroot [BR] juice) of exercise either 2 h (12.6 mmol) or 3 h (16.8 mmol) postconsumption. On a separate day and with separate individuals (n = 7), the experimental protocol was repeated with nitrate‐free concentrated BR juice. Venous blood was obtained for NO3− and NO2− at rest prior to the onset of each exercise trial, and for blood gasses at rest and the end of each exercise intensity during normoxia and hypoxia.
Figure 2
Figure 2
(A) Plasma Nitrate (NO3−) and (B) Nitrite (NO2−) concentrations in control trial and 2–3 h after ingestion of BR (BEET). *P < 0.05 versus control trial.
Figure 3
Figure 3
(A) Forearm blood flow and (B) vascular conductance during graded handgrip exercise and hypoxic exercise prior to and following ingestion of concentrated BR (BEET). *P < 0.05 versus control trial within respective condition (BEET or Placebo). % MVC, % of maximal voluntary contraction.
Figure 4
Figure 4
(A) Forearm VO2 and (B) a‐vO2 at rest and during graded handgrip exercise and hypoxic exercise prior to and following BR ingestion (BEET). *P < 0.05 versus control trial. % MVC, % of maximal voluntary contraction.

References

    1. Allen, J. D. , Miller E. M., Schwark E., Robbins J. L., Duscha B. D., and Annex B. H.. 2009. Plasma nitrite response and arterial reactivity differentiate vascular health and performance. Nitric Oxide 20:231–237.
    1. Anrep, G. V. , and von Saalfeld E.. 1935. The blood flow through the skeletal muscle in relation to its contraction. J. Physiol. 85:375–399.
    1. Bailey, S. J. , Winyard P., Vanhatalo A., Blackwell J. R., Dimenna F. J., Wilkerson D. P., et al. 2009. Dietary nitrate supplementation reduces the O2 cost of low‐intensity exercise and enhances tolerance to high‐intensity exercise in humans. J. Appl. Physiol. 107:1144–1155.
    1. Bailey, S. J. , Fulford J., Vanhatalo A., Winyard P. G., Blackwell J. R., DiMenna F. J., et al. 2010. Dietary nitrate supplementation enhances muscle contractile efficiency during knee‐extensor exercise in humans. J. Appl. Physiol. (Bethesda, Md : 1985) 109: 135–148.
    1. Bailey, S. J. , Varnham R. L., DiMenna F. J., Breese B. C., Wylie L. J., and Jones A. M.. 2015. Inorganic nitrate supplementation improves muscle oxygenation, O(2) uptake kinetics, and exercise tolerance at high but not low pedal rates. J. Appl. Physiol. (Bethesda, Md: 1985) 118:1396–1405.
    1. Banzett, R. B. , Garcia R. T., and Moosavi S. H.. 2000. Simple contrivance “clamps” end‐tidal PCO(2) and PO(2) despite rapid changes in ventilation. J. Appl. Physiol. 88:1597–1600.
    1. Betteridge, S. , Bescos R., Martorell M., Pons A., Garnham A. P., Stathis C. C., et al. 2016. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males. J. Appl. Physiol. (Bethesda, Md : 1985) 120:391–398.
    1. Bockman, E. L. 1983. Blood flow and oxygen consumption in active soleus and gracilis muscles in cats. Am. J. Physiol. 244:H546–H551.
    1. Bockman, E. L. , McKenzie J. E., and Ferguson J. L.. 1980. Resting blood flow and oxygen consumption in soleus and gracilis muscles of cats. Am. J. Physiol. 239:H516–H524.
    1. Boden, W. E. , Finn A. V., Patel D., Peacock W. F., Thadani U., and Zimmerman F. H.. 2012. Nitrates as an integral part of optimal medical therapy and cardiac rehabilitation for stable angina: review of current concepts and therapeutics. Clin. Cardiol. 35:263–271.
    1. Boorsma, R. K. , Whitfield J., and Spriet L. L.. 2014. Beetroot juice supplementation does not improve performance of elite 1500‐m runners. Med. Sci. Sports Exerc. 46:2326–2334.
    1. Breese, B. C. , McNarry M. A., Marwood S., Blackwell J. R., Bailey S. J., and Jones A. M.. 2013. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe‐intensity exercise initiated from an elevated metabolic rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305:R1441–R1450.
    1. Casey, D. P. , Madery B. D., Curry T. B., Eisenach J. H., Wilkins B. W., and Joyner M. J.. 2010. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. J. Physiol. 588:373–385.
    1. Casey, D. P. , Treichler D. P., Ganger C. T., Schneider A. C., and Ueda K.. 2015. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults. J. Appl. Physiol. (Bethesda, Md : 1985) 118:178–186.
    1. Clifford, P. S. , and Hellsten Y.. 2004. Vasodilatory mechanisms in contracting skeletal muscle. J. Appl. Physiol. 97:393–403.
    1. Cosby, K. , Partovi K. S., Crawford J. H., Patel R. P., Reiter C. D., Martyr S., et al. 2003. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9:1498–1505.
    1. Crawford, J. H. , Isbell T. S., Huang Z., Shiva S., Chacko B. K., Schechter A. N., et al. 2006. Hypoxia, red blood cells, and nitrite regulate NO‐dependent hypoxic vasodilation. Blood 107:566–574.
    1. Crecelius, A. R. , Kirby B. S., Voyles W. F., and Dinenno F. A.. 2010. Nitric Oxide but not vasodilating prostaglandins contributes to the improvement of exercise hyperemia via ascorbic acid in healthy older adults. Am. J. Physiol. Heart Circ. Physiol. 299:H1633–H1641.
    1. Crecelius, A. R. , Kirby B. S., Voyles W. F., and Dinenno F. A.. 2011. Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins. J. Physiol. 589:3671–3683.
    1. Dejam, A. , Hunter C. J., Tremonti C., Pluta R. M., Hon Y. Y., Grimes G., et al. 2007. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation 116:1821–1831.
    1. Delp, M. D. , and Duan C.. 1996. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J. Appl. Physiol. (Bethesda, Md : 1985) 80:261–270.
    1. Dinenno, F. A. 2016. Skeletal muscle vasodilation during systemic hypoxia in humans. J. Appl. Physiol. (Bethesda, Md : 1985) 120:216–225.
    1. Dinenno, F. A. , and Joyner M. J.. 2003. Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory? J. Physiol. 553:281–292.
    1. Dinenno, F. A. , and Joyner M. J.. 2004. Combined NO and PG inhibition augments alpha‐adrenergic vasoconstriction in contracting human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 287:H2576–H2584.
    1. Ferguson, S. K. , Hirai D. M., Copp S. W., Holdsworth C. T., Allen J. D., Jones A. M., et al. 2013. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J. Physiol. 591:547–557.
    1. Ferguson, S. K. , Holdsworth C. T., Wright J. L., Fees A. J., Allen J. D., Jones A. M., et al. 2015. Microvascular oxygen pressures in muscles comprised of different fiber types: impact of dietary nitrate supplementation. Nitric Oxide 48:38–43.
    1. Glean, A. A. , Ferguson S. K., Holdsworth C. T., Colburn T. D., Wright J. L., Fees A. J., et al. 2015. Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 309:H1354–H1360.
    1. Govoni, M. , Jansson E. A., Weitzberg E., and Lundberg J. O.. 2008. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19:333–337.
    1. Johnson, M. A. , Polgar J., Weightman D., and Appleton D.. 1973. Data on the distribution of fibre types in thirty‐six human muscles. An autopsy study. J. Neurol. Sci. 18:111–129.
    1. Jones, A. M. 2014. Dietary nitrate supplementation and exercise performance. Sports Med. 44(Suppl 1):S35–S45.
    1. Kenjale, A. A. , Ham K. L., Stabler T., Robbins J. L., Johnson J. L., Vanbruggen M., et al. 2011. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J. Appl. Physiol. (Bethesda, Md : 1985) 110:1582–1591.
    1. Kerley, C. P. , Cahill K., Bolger K., McGowan A., Burke C., Faul J., et al. 2015. Dietary nitrate supplementation in COPD: an acute, double‐blind, randomized, placebo‐controlled, crossover trial. Nitric Oxide 44:105–111.
    1. Kim, J. K. , Moore D. J., Maurer D. G., Kim‐Shapiro D. B., Basu S., Flanagan M. P., et al. 2015. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men. Appl. Physiol. Nutr. Metab. 40:122–128.
    1. Kirby, B. S. , Markwald R. R., Smith E. G., and Dinenno F. A.. 2005. Mechanical effects of muscle contraction do not blunt sympathetic vasoconstriction in humans. Am. J. Physiol. Heart Circ. Physiol. 289:H1610–H1617.
    1. Lansley, K. E. , Winyard P. G., Bailey S. J., Vanhatalo A., Wilkerson D. P., Blackwell J. R., et al. 2011a. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 43:1125–1131.
    1. Lansley, K. E. , Winyard P. G., Fulford J., Vanhatalo A., Bailey S. J., Blackwell J. R., et al. 2011b. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo‐controlled study. J. Appl. Physiol. (Bethesda, Md : 1985) 110:591–600.
    1. Larsen, F. J. , Weitzberg E., Lundberg J. O., and Ekblom B.. 2010. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic. Biol. Med. 48:342–347.
    1. Larsen, F. J. , Schiffer T. A., Borniquel S., Sahlin K., Ekblom B., Lundberg J. O., et al. 2011. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 13:149–159.
    1. Lee, J. S. , Stebbins C. L., Jung E., Nho H., Kim J. K., Chang M. J., et al. 2015. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R459–R466.
    1. Lundberg, J. O. , Weitzberg E., and Gladwin M. T.. 2008. The nitrate‐nitrite‐nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discovery 7:156–167.
    1. Maher, A. R. , Milsom A. B., Gunaruwan P., Abozguia K., Ahmed I., Weaver R. A., et al. 2008. Hypoxic modulation of exogenous nitrite‐induced vasodilation in humans. Circulation 117:670–677.
    1. Mohrman, D. E. , and Regal R. R.. 1988. Relation of blood flow to VO2, PO2, and PCO2 in dog gastrocnemius muscle. Am. J. Physiol. 255:H1004–H1010.
    1. Pearson, T. , McArdle A., and Jackson M. J.. 2015. Nitric oxide availability is increased in contracting skeletal muscle from aged mice, but does not differentially decrease muscle superoxide. Free Radic. Biol. Med. 78:82–88.
    1. Piknova, B. , Park J. W., Swanson K. M., Dey S., Noguchi C. T., and Schechter A. N.. 2015. Skeletal muscle as an endogenous nitrate reservoir. Nitric Oxide 47:10–16.
    1. Piknova, B. , Park J. W., Kwan Jeff Lam K., and Schechter A. N.. 2016. Nitrate as a source of nitrite and nitric oxide during exercise hyperemia in rat skeletal muscle. Nitric Oxide 55–56:54–61.
    1. Pye, D. , Palomero J., Kabayo T., and Jackson M. J.. 2007. Real‐time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions. J. Physiol. 581:309–318.
    1. Richards, J. C. , Luckasen G. J., Larson D. G., and Dinenno F. A.. 2014. Role of alpha‐adrenergic vasoconstriction in regulating skeletal muscle blood flow and vascular conductance during forearm exercise in ageing humans. J. Physiol. 592:4775–4788.
    1. Richards, J. C. , Crecelius A. R., Larson D. G., and Dinenno F. A.. 2015. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults. Am. J. Physiol. Heart Circ. Physiol. 309:H360–H368.
    1. Richards, J. C. , Crecelius A. R., Larson D. G., Luckasen G. J., and Dinenno F. A.. 2017. Impaired peripheral vasodilation during graded systemic hypoxia in healthy older adults: role of the sympathoadrenal system. Am. J. Physiol. Heart Circ. Physiol. 312:H832–H841.
    1. Shepherd, A. I. , Gilchrist M., Winyard P. G., Jones A. M., Hallmann E., Kazimierczak R., et al. 2015a. Effects of dietary nitrate supplementation on the oxygen cost of exercise and walking performance in individuals with type 2 diabetes: a randomized, double‐blind, placebo‐controlled crossover trial. Free Radic. Biol. Med. 86:200–208.
    1. Shepherd, A. I. , Wilkerson D. P., Dobson L., Kelly J., Winyard P. G., Jones A. M., et al. 2015b. The effect of dietary nitrate supplementation on the oxygen cost of cycling, walking performance and resting blood pressure in individuals with chronic obstructive pulmonary disease: a double blind placebo controlled, randomised control trial. Nitric Oxide 48:31–37.
    1. Stamler, J. S. , and Meissner G.. 2001. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 81:209–237.
    1. Vanhatalo, A. , Bailey S. J., Blackwell J. R., DiMenna F. J., Pavey T. G., Wilkerson D. P., et al. 2010. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate‐intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299:R1121–R1131.
    1. Vanhatalo, A. , Fulford J., Bailey S. J., Blackwell J. R., Winyard P. G., and Jones A. M.. 2011. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J. Physiol. 589:5517–5528.
    1. Wilkerson, D. P. , Hayward G. M., Bailey S. J., Vanhatalo A., Blackwell J. R., and Jones A. M.. 2012. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well‐trained cyclists. Eur. J. Appl. Physiol. 112:4127–4134.
    1. Wylie, L. J. , Kelly J., Bailey S. J., Blackwell J. R., Skiba P. F., Winyard P. G., et al. 2013a. Beetroot juice and exercise: pharmacodynamic and dose‐response relationships. J. Appl. Physiol. 115:325–336.
    1. Wylie, L. J. , Mohr M., Krustrup P., Jackman S. R., Ermiotadis G., Kelly J., et al. 2013b. Dietary nitrate supplementation improves team sport‐specific intense intermittent exercise performance. Eur. J. Appl. Physiol. 113:1673–1684.
    1. Zamani, P. , Rawat D., Shiva‐Kumar P., Geraci S., Bhuva R., Konda P., et al. 2015. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation 131:371–380; discussion 380.
    1. Zweier, J. L. , Wang P., Samouilov A., and Kuppusamy P.. 1995. Enzyme‐independent formation of nitric oxide in biological tissues. Nat. Med. 1:804–809.

Source: PubMed

3
Subscribe