Study design and rationale for a randomized controlled trial to assess effectiveness of stochastic vibrotactile mattress stimulation versus standard non-oscillating crib mattress for treating hospitalized opioid-exposed newborns

Elisabeth Bloch-Salisbury, Debra Bogen, Mark Vining, Dane Netherton, Nicolas Rodriguez, Tory Bruch, Cheryl Burns, Emily Erceg, Barbara Glidden, Didem Ayturk, Sanjay Aurora, Toby Yanowitz, Bruce Barton, Sue Beers, Elisabeth Bloch-Salisbury, Debra Bogen, Mark Vining, Dane Netherton, Nicolas Rodriguez, Tory Bruch, Cheryl Burns, Emily Erceg, Barbara Glidden, Didem Ayturk, Sanjay Aurora, Toby Yanowitz, Bruce Barton, Sue Beers

Abstract

The incidence of Neonatal Abstinence Syndrome (NAS) continues to rise and there remains a critical need to develop non-pharmacological interventions for managing opioid withdrawal in newborns. Objective physiologic markers of opioid withdrawal in the newborn remain elusive. Optimal treatment strategies for improving short-term clinical outcomes and promoting healthy neurobehavioral development have yet to be defined. This dual-site randomized controlled trial (NCT02801331) is designed to evaluate the therapeutic efficacy of stochastic vibrotactile stimulation (SVS) for reducing withdrawal symptoms, pharmacological treatment, and length of hospitalization, and for improving developmental outcomes in opioid-exposed neonates. Hospitalized newborns (n = 230) receiving standard clinical care for prenatal opioid exposure will be randomly assigned within 48-hours of birth to a crib with either: 1) Intervention (SVS) mattress: specially-constructed SVS crib mattress that delivers gentle vibrations (30-60 Hz, ~12 μm RMS surface displacement) at 3-hr intervals; or 2) Control mattress (treatment as usual; TAU): non-oscillating hospital-crib mattress. Infants will be studied throughout their hospitalization and post discharge to 14-months of age. The study will compare clinical measures (i.e., withdrawal scores, cumulative dose and duration of medications, velocity of weight gain) and characteristic progression of physiologic activity (i.e., limb movement, cardio-respiratory, temperature, blood-oxygenation) throughout hospitalization between opioid-exposed infants who receive SVS and those who receive TAU. Developmental outcomes (i.e., physical, social, emotional and cognitive) within the first year of life will be evaluated between the two study groups. Findings from this randomized controlled trial will determine whether SVS reduces in-hospital severity of NAS, improves physiologic function, and promotes healthy development.

Keywords: Developmental outcomes; EMR, Electronic Medical Record; Infant drug withdrawal; Maternal substance use during pregnancy; NAS, Neonatal Abstinence Syndrome; NICU, Neonatal Intensive Care Unit; NN, Newborn Nursery; Neonatal abstinence syndrome; Neonatal opioid withdrawal syndrome; SVS, Stochastic vibrotactile stimulation (intervention-mattress condition); Stochastic resonance; TAU, Treatment as usual (control condition); UMass, UMass Memorial Healthcare (Coordinating/Primary study site); UPitt, University of Pittsburgh (Consortium study site).

Conflict of interest statement

Dr. Bloch-Salisbury is an inventor on a patent (PCT/US2015/021999) licensed to Prapela, Inc related to the SVS-mattress device and is a potential beneficiary of a licensing agreement with Prapela, Inc. The authors have no other financial relationships relevant to this article to disclose.

© 2021 The Authors.

Figures

Fig. 1
Fig. 1
Stochastic vibrotactile stimulation (SVS) mattress device.
Fig. 2
Fig. 2
Target enrollment plan. SVS=Stochastic vibrotactile stimulation mattress (intervention); TAU = Treatment as usual (control).
Fig. 3
Fig. 3
Bedside Setup. SVS group = Infants randomly assigned to receive stochastic vibrotractile stimulation: SVS mattress in bedside portable crib with stimulus driver and uninterrupted power supply in crib-cart shelving; TAU group = Infants randomly assigned to receive treatment as usual (hospital crib mattress, not shown); Touchscreen computerized bedside log with laminated instructions attaches to crib; Mattress protocol indicates automated 3-hour stimulation cycle (SVS) or no stimulation (TAU).

References

    1. Tolia V.N., Patrick S.W., MM B., Murthy K., Sousa J., Smith P.B., Clark R.H., Spitzer A.R. Increasing incidence of the neonatal abstinence syndrome in U.S. neonatal ICUs. N. Engl. J. Med. 2015;372:2118–2126. doi: 10.1056/NEJMsa1500439.
    1. Patrick S.W., Schumacher R.E., Benneyworth B.D., Krans E.E., McAllister J.M., Davis M.M. Neonatal abstinence syndrome and associated health care expenditures: United States, 2000-2009. JAMA, J. Am. Med. Assoc. 2012;307:1934–1940. doi: 10.1001/jama.2012.3951.
    1. Strahan A.E., Guy G.P., Bohm M., Frey M., Ko J.Y. Neonatal abstinence syndrome incidence and health care costs in the United States, 2016. JAMA Pediatr. 2020;174:200–202. doi: 10.1001/jamapediatrics.2019.4791.
    1. Desai R.J., Hernandez-Diaz S., Bateman B.T., Huybrechts K.F. Increase in prescription opioid use during pregnancy among medicaid-enrolled women, Obstet. Gynecology. 2014;123:997–1002. doi: 10.1097/AOG.0000000000000208.
    1. Winkelman T.N.A., Villapiano N., Kozhimannil K.B., Davis M.M., Patrick S.W. Incidence and costs of neonatal abstinence syndrome among infants with medicaid: 2004-2014. Pediatrics. 2018;141 doi: 10.1542/peds.2017-3520.
    1. Kozhimannil K.B., Graves A.J., Levy R., Patrick S.W. Non-medical use of prescription opioids among pregnant US women. Wom. Health Issues. 2017;27:308–315. doi: 10.1016/j.whi.2017.03.001.
    1. Jansson L.M., DiPietro J.A., Elko A., Velez M. Infant autonomic functioning and neonatal abstinence syndrome. Drug Alcohol Depend. 2010;109:198–204. doi: 10.1016/j.drugalcdep.2010.01.004.
    1. Barr G.A., McPhie-Lalmansingh A., Perez J., Riley M. 2011. Changing Mechanisms of Opiate Tolerance and Withdrawal during Early Development: Animal Models of the Human Experience.
    1. Jansson L.M., Velez M. Neonatal abstinence syndrome. Curr. Opin. Pediatr. 2012;24:252–258. doi: 10.1097/MOP.0b013e32834fdc3a.
    1. Hudak M.L., Tan R.C. The committee on drugs and the commitee on fetus and newborn, neonatal drug withdrawal. Pediatrics. 2012;129:e540–e560. doi: 10.1542/peds.2011-3212.
    1. Sutter M.B., Leeman L., Hsi A. Neonatal opioid withdrawal syndrome. Obstet. Gynecol. Clin. N. Am. 2014;41:317–334. doi: 10.1016/j.ogc.2014.02.010.
    1. Kuschel C. Managing drug withdrawal in the newborn infant. Semin. Fetal Neonatal Med. 2007;12:127–133.
    1. Kocherlakota P. Neonatal abstinence ayndrome. Pediatrics. 2014;134:e547–e561. doi: 10.1542/peds.2013-3524.
    1. Sublett J. Neonatal abstinence syndrome: therapeutic interventions. Am. J. Matern. Child Nurs. 2013;38:102–107. doi: 10.1097/NMC.0b013e31826e978e.
    1. Wachman E.M., Schiff D.M., Silverstein M. Neonatal abstinence syndrome advances in diagnosis and treatment. J. Am. Med. Assoc. 2018;319:1362–1374. doi: 10.1001/jama.2018.2640.
    1. Velez M., Jansson L.M. The opioid dependent mother and newborn dyad: nonpharmacologic care. J. Addiction Med. 2008;2:113–120. doi: 10.1097/ADM.0b013e31817e6105.
    1. Bio L.L., Siu A., Poon C.Y. Update on the pharmacologic management of neonatal abstinence syndrome. J. Perinatol. 2011;31:692–701. doi: 10.1038/jp.2011.116.
    1. Disher T., Gullickson C., Singh B., Cameron C., Boulos L., Beaubien L., Campbell-Yeo M. Pharmacological treatments for neonatal abstinence syndrome: a systematic review and network meta-analysis. JAMA Pediatr. 2019;173:234–243. doi: 10.1001/jamapediatrics.2018.5044.
    1. US Department of Justice . A DEA resource guide; 2017. Drug Enforcement Administration, Drugs of Abuse.
    1. Osborn D.A., Jeffery H.E., Cole M.J. Opiate treatment for opiate withdrawal in newborn infants. Cochrane Database Syst. Rev. 2010:1–52. doi: 10.1002/14651858.cd002059.pub2.
    1. Osborn D.A., Jeffery H.E., Cole M.J. Sedatives for opiate withdrawal in newborn infants. Cochrane Database Syst. Rev. 2010;44 doi: 10.1002/14651858.cd002053.pub2.
    1. Handelmann G.E., Dow-Edwards D. Modulation of brain development by morphine: effects of central motor systems and behavior. Peptides. 1985;6:29–34.
    1. de Graaf J., van Lingen R.A., Simons S.H.P., Anand K.J.S., Duivenvoorden H.J., Weisglas-Kuperus N., Roofthooft D.W.E., Groot Jebbink L.J.M., Veenstra R.R., Tibboel D., van Dijk M. Long-term effects of routine morphine infusion in mechanically ventilated neonates on children's functioning: five-year follow-up of a randomized controlled trial. Pain. 2011;152:1391–1397.
    1. Rozisky J.R., Medeiros L.F., Adachi L.S., Espinosa J., de Souza A., Neto A.S., Bonan C.D., Caumo W., da Silva Torres I.L. Morphine exposure in early life increases nociceptive behavior in a rat formalin tonic pain model in adult life. Brain Res. 2011;1367:122–129.
    1. Ferguson S.A., Ward W.L., Paule M.G., Hall R.W., Anand K.J.S. A pilot study of preemptive morphine analgesia in preterm neonates: effects on head circumference, social behavior, and response latencies in early childhood. Neurotoxicol. Teratol. 2012;34:47–55. doi: 10.1016/j.ntt.2011.10.008.
    1. Zwicker J.G., Miller S.P., Grunau R.E., Chau V., Brant R., Studholme C., Lku M., Synnes A., Poskitt K.J., Stiver J.L., Tam E.W.Y. Smaller cerebellar growth and poorer neruodevelopmental outcomes in very preterm infants exposed to morphine. J. Pediatr. 2016;172:81–97. doi: 10.1016/j.jpeds.2015.12.024.
    1. Timpson W., Killoran C., Maranda L., Picarillo A., Bloch-Salisbury E. A quality improvement initiative to increase scoring consistency and accuracy of the Finnegan tool. Adv. Neonatal Care. 2018;18:70–78. doi: 10.1097/ANC.0000000000000441.
    1. Rodriguez N., Vining M., Bloch-Salisbury E. Salivary cortisol levels as a biomarker for severity of withdrawal in opioid-exposed newborns. Pediatr. Res. 2020;87:1033–1038. doi: 10.1038/s41390-019-0601-7.
    1. Zuzarte I., Indic P., Barton B., Paydarfar D., Bednarek F., Bloch-Salisbury E. Vibrotactile stimulation : a non- pharmacological intervention for opioid-exposed newborns. PLoS One. 2017;12:1–15. doi: 10.1371/journal.%0Apone.0175981.
    1. Collins J.J., Imhoff T.T., Grigg P. Noise-enhanced tactile sensation. Nature. 1996;383:770.
    1. Moss F., Ward L.M., Sannita W.G. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 2004;115:267–281. doi: 10.1016/j.clinph.2003.09.014.
    1. Bloch-Salisbury E., Paydarfar D. 2015. Patent Publication WO 2015/143420 PCT/US2015/021999: Methods and Systems for Reducing Irritability in Infants.
    1. Patrick S.W., Burke J.F., Biel T.J., Auger K.A., Goyal N.K., Cooper W.O. Risk of hospital readmission among infants with neonatal abstinence syndrome. Hosp. Pediatr. 2015;5:513–519.
    1. O'Brien C., Hunt R., Jeffrey H.E., O'Brien C., Hunt R., Jeffery H.E. Measurement of movement is an objective method to assist in assessment of opiate withdrawal in newborns. Arch. Dis. Child. Fetal Neonatal Ed. 2004;89:F305–F309. doi: 10.1136/adc.2002.025270.
    1. Finnegan L.P. Neonatal abstinence syndrome: assessment and pharmacotherapy. In: Nelson N., editor. Curr. Ther. Neonatal-Perinatal Med. 2 ed. BC Decker; Ontario: 1990.
    1. Jansson L.M., Velez M., Harrow C. The opioid exposed newborn: assessment and pharmacologic management. J. Opioid Manag. 2009;5:47–55. doi: 10.1016/j.bbi.2008.05.010.
    1. T. Bruch, N. Rodriguez, L. McKenna, B. Ta, B. Coffman, E. Bloch-Salisbury, Actigraphy as an objective measure of irritability in neonatal abstinence syndrome, [Conference Peer-Reviewed Poster Session]. Pediatric Academic Societies Meeting, Philadelphia, PA, May 1 - May 5, 2020; Conference Cancelled Due to Covid-19, 2020: Disseminated in Meeting Program Guide 04/03/20, E-PAS2020:2836.611.
    1. Velez M., Jaansson L.M. The opioid dependent mother and newborn dyad: non-pharmacologic care. J. Addiction Med. 2008;2:113–120. doi: 10.1152/japplphysiol.00058.2009.
    1. Squires J., Bricker D. ASQ-3 User's Guid. Paul H Brookes Publising Company; Baltimore: 2009. Ages and Stages questionnaires- third edition (ASQ-3): a parent-completed child monitoring system.
    1. Epstein N., Baldwin L., Bishop D. The McMaster family assessment device. J. Marital Fam. Ther. 1983;9:171–180. doi: 10.1111/j.1752-0606.1983.tb01497.x.
    1. Derogatis L.R. NCS Pearson, Inc.; 2001. BSI 18, Brief Symptom Inventory 18: Administration, Scoring and Procedures Manual.
    1. Wechsler D. Wechsler Abbreviated Scale of Intelligence. Second Edition (WASI-II) NCS Pearson; San Antonio: 2011.
    1. Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)-A metadata-driven methadology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010. (Research)
    1. Harris P.A., Taylor R., Minor B.L., Elliott V., Fernandez M., Neal L.O., Mcleod L., Delacqua G., Delacqua F., Duda S.N., Consortium R. The REDCap consortium: building an international community of software partners. J. Biomed. Inf. 2019;95 doi: 10.1016/j.jbi.2019.103208.
    1. Bayley N. third ed. Psychological Corporation; San Antonio: 2006. Bayley Scales of Infant and Toddler Development: Administration Manual.
    1. Albers C.A., Grieve A.J. Review of Bayley scales of infant and toddler development--third edition [Review of the book Bayley scales of infant and toddler development--Third edition, Albers C.A., Grieve A.J., editors. J. Psychoeduc. Assess. 2007;25:180–190. doi: 10.1177/0734282906297199.
    1. Haley S.M., Coster W.J., Ludlow L.H., Haltiwanger J.T., Andrellos P.J. Pearson Assessment; San Antonio: 1991. Pediatric Evaluation of Disability (PEDI)
    1. Sadeh A. A brief screening questionnaire for infant sleep problems: validation and findings for an internet sample. Pediatrics. 2004;113:e570–e577. doi: 10.1542/peds.113.6.e570.
    1. Nayeri F., Sheikh M., Kalani J., Niknafs P., Shariat M., Dalili H., Dehpour A.R. Phenobarbital versus morphine in the management of neonatal abstinence syndrome, a randomized control trial. BMC Pediatr. 2015;15 doi: 10.1186/s12887-015-0377-9.
    1. Johnson S., Moore T., Marlow N. Using the Bayley-III to assess neurodevelopmental delay: which cut-off should be used? Pediatr. Res. 2014;75:670–674. doi: 10.1038/pr.2014.10.
    1. Ingraham L.J., Aiken C.B. An empirical approach to determining criteria for abnormality in test batteries with multiple measures. Neuropsychology. 1996;10:120–124. doi: 10.1037/0894-4105.10.1.120.
    1. Chan A.W., Tetzlaff J.M., Altman D.G., Laupacis A., Gøtzsche P.C., Krleža-Jerić K., Hróbjartsson A., Mann H., Dickersin K., Berlin J.A., Doré C.J., Parulekar W.R., Summerskill W.S.M., Groves T., Schulz K.F., Sox H.C., Rockhold F.W., Rennie D., Moher D. Spirit 2013 statement: defining standard protocol items for clinical trials. Ann. Intern. Med. 2013;158:200–207. doi: 10.7507/1672-2531.20130256.
    1. Boutron I., Altman D., Moher D., Schulz K., Ravaud P., Consort NPT Group CONSORT statement for randomized trials of nonpharmacologic treatments: a 2017 Update and a CONSORT extension for nonpharmacologic trial abstracts. Ann. Intern. Med. 2017
    1. Suresh S., Anand K.J.S. Opioid tolerance in neonates: mechanisms, diagnosis, assessment , and management. Semin. Perinatol. 1998;22:425–433.
    1. Gaalema D.E., Scott T.L., Heil S.H., Coyle M.G., Kaltenbach K., Badger G.J., Arria A.M., Stine S.M., Martin P.R., Jones H.E. Differences in the profile of neonatal abstinence syndrome signs in methadone- versus buprenorphine-exposed neonates. Addiction. 2012;107:53–62. doi: 10.1111/j.1360-0443.2012.04039.x.
    1. Bagley S., Wachman S.M., Holland E E.M., Brogly, Bagley S.M., Wachman E.M., Holland E., Brogly S.B. Review of the assessment and management of neonatal abstinence syndrome. Addiction Sci. Clin. Pract. 2014;9:19. doi: 10.1186/1940-0640-9-19.
    1. Finnegan L.P., Connaughton J.F., Kron R.E., Emich J.P. Neonatal abstinence syndrome: assessment and management. Addict. Dis. 1975;2:141–158.
    1. Loepke A.W., Soriano S.G. Greg. Pediatr. Anesth. fifth ed. 2011. Impact of pediatric surgery and anesthesia on brain development.
    1. Attarian S., Tran L.C., Moore A., Stanton G., Meyer E., Moore R.P. The neurodevelopmental impact of neonatal morphine administration. Brain Sci. 2014;4:321–334. doi: 10.3390/brainsci4020321.
    1. Yeoh S.L., Eastwood J., Wright I.M., Morton R., Melhuish E., Ward M., Oei J.L. Cognitive and motor outcomes of children with prenatal opioid exposure: a systematic review and meta-analysis. JAMA Netw. Open. 2019;2:1–14. doi: 10.1001/jamanetworkopen.2019.7025.
    1. Baldacchino A., Arbuckle K., Petrie D.J., McCowan C. Neurobehavioral consequences of chronic intrauterine opioid exposure in infants and preschool children: a systematic reivew and meta analysis. BMC Psychiatr. 2014;14
    1. Jones H.E., Kaltenbach K., Heil S.H., Stine S.M., Coyle M.G., Arria A.M., OʼGrady K.E., Selby P., Martin P.R., Fischer G. Neonatal abstinence syndrome after methadone or buprenorphine exposure. N. Engl. J. Med. 2010;363:2320–2331. doi: 10.1097/OGX.0b013e318225c419.
    1. Kaltenbach K., Finnegan L.P. Perinatal and developmental outcomes of infants exposed to methadone in-utero. Neurotoxicol. Teratol. 1987;9:311–313.
    1. Beers S.R., Wisniewski S.R., Garcia-Filion P., Tian Y., Hahner T., Berger R.P., Bell M.J., Adelson P.D. Validity of a pediatric version of the glasgow outcome scale–extended. J. Neurotrauma. 2012;29:1126–1139. doi: 10.1089/neu.2011.2272.
    1. Varni J., Seid M., Kurtin P. Pediatric quality of life: reliability and validity of the pediatric quality of life inventory: 4.0 Generic core scales in healty and patient populations. Med. Care. 2001;39:800–812.

Source: PubMed

3
Subscribe