Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections

Philip C Calder, Anitra C Carr, Adrian F Gombart, Manfred Eggersdorfer, Philip C Calder, Anitra C Carr, Adrian F Gombart, Manfred Eggersdorfer

Abstract

Public health practices including handwashing and vaccinations help reduce the spread and impact of infections. Nevertheless, the global burden of infection is high, and additional measures are necessary. Acute respiratory tract infections, for example, were responsible for approximately 2.38 million deaths worldwide in 2016. The role nutrition plays in supporting the immune system is well-established. A wealth of mechanistic and clinical data show that vitamins, including vitamins A, B6, B12, C, D, E, and folate; trace elements, including zinc, iron, selenium, magnesium, and copper; and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid play important and complementary roles in supporting the immune system. Inadequate intake and status of these nutrients are widespread, leading to a decrease in resistance to infections and as a consequence an increase in disease burden. Against this background the following conclusions are made: (1) supplementation with the above micronutrients and omega-3 fatty acids is a safe, effective, and low-cost strategy to help support optimal immune function; (2) supplementation above the Recommended Dietary Allowance (RDA), but within recommended upper safety limits, for specific nutrients such as vitamins C and D is warranted; and (3) public health officials are encouraged to include nutritional strategies in their recommendations to improve public health.

Keywords: COVID-19; immune system; influenza; micronutrients; minerals; omega-3 fatty acids; viral infection; vitamin C; vitamin D; vitamins.

Conflict of interest statement

P.C.C. has research funding from BASF AS and Bayer Consumer Care; acts as an advisor/consultant to BASF AS, DSM, Cargill, Smartfish, Nutrileads, Bayer Consumer Care, and Pfizer (now GSK) Consumer Healthcare; has received reimbursement for travel and/or speaking from Danone, Fresenius Kabi, Baxter, Pfizer (now GSK) Consumer Healthcare, Abbott, Smartfish, Biogredia and the California Walnut Commission; and is President and member of the Board of Directors of the European Branch of the International Life Sciences Institute. A.C.C. has received research funding from Bayer Consumer Care and travel reimbursement from DSM. M.E. acts as an advisor for DSM and received travel reimbursement from DSM. He is member of the Scientific Board of PM International and President of the Gesellschaft für angewandte Vitaminforschung. A.F.G. has received research funding from Bayer Consumer Care and has acted as an advisor/consultant for and has received reimbursement for travel and/or speaking from Bayer Consumer Care.

References

    1. World Health Organization Influenza (Seasonal) [(accessed on 2 March 2020)]; Available online:
    1. Naghavi M., Abajobir A.A., Abbafati C., Abbas K.M., Abd-Allah F., Abera S.F., Aboyans V., Adetokunboh O., Afshin A., Agrawal A., et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–1210. doi: 10.1016/S0140-6736(17)32152-9.
    1. Troeger C., Blacker B., Khalil I.A., Rao P.C., Cao J., Zimsen S.R.M., Albertson S.B., Deshpande A., Farag T., Abebe Z., et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018;18:1191–1210. doi: 10.1016/S1473-3099(18)30310-4.
    1. Rudd K.E., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R., Colombara D.V., Ikuta K.S., Kissoon N., Finfer S., et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–211. doi: 10.1016/S0140-6736(19)32989-7.
    1. U.S. Centers for Disease Control Take 3 Actions to Fight Flu. [(accessed on 2 March 2020)]; Available online: .
    1. Visher E., Whitefield S.E., McCrone J.T., Fitzsimmons W., Lauring A.S. The mutational robustness of Influenza A virus. PLoS Pathog. 2016;12:e1005856. doi: 10.1371/journal.ppat.1005856.
    1. Dawood F.S., Chung J.R., Kim S.S., Zimmerman R.K., Nowalk M.P., Jackson M.L., Jackson L.A., Monto A.S., Martin E.T., Belongia E.A., et al. Interim estimates of 2019–20 seasonal influenza vaccine effectiveness—United States, February 2020. Morb. Mortal. Wkly. Rep. 2020;69:177–182. doi: 10.15585/mmwr.mm6907a1.
    1. U.S. Centers for Disease Control Seasonal Influenza Vaccine Effectiveness, 2018–2019. [(accessed on 2 March 2020)]; Available online: .
    1. Murphy K., Weaver C. Janeway’s Immunobiology. 9th ed. Taylor & Francis; Philadelphia, PA, USA: 2017. pp. 1–35.
    1. Carr A.C., Maggini S. Vitamin C and immune function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211.
    1. Martineau A.R., Jolliffe D.A., Hooper R.L., Greenberg L., Aloia J.F., Bergman P., Dubnov-Raz G., Esposito S., Ganmaa D., Ginde A.A., et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi: 10.1136/bmj.i6583.
    1. Gombart A.F., Pierre A., Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients. 2020;12:236. doi: 10.3390/nu12010236.
    1. EU Register on Nutrition and Health Claims. [(accessed on 5 March 2020)]; Available online: .
    1. Calder P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology?: Omega-3 fatty acids and inflammation. Br. J. Clin. Pharmacol. 2012;75:645–662. doi: 10.1111/j.1365-2125.2012.04374.x.
    1. Gombart A.F. The vitamin D–antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4:1151. doi: 10.2217/fmb.09.87.
    1. Greiller C., Martineau A. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7:4240–4270. doi: 10.3390/nu7064240.
    1. Basil M.C., Levy B.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016;16:51–67. doi: 10.1038/nri.2015.4.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Pedersen S.F., Ho Y.-C. SARS-CoV-2: A Storm is Raging. J. Clin. Investig. 2020 doi: 10.1172/JCI137647.
    1. Gao Y., Zhang H., Luo L., Lin J., Li D., Zheng S., Huang H., Yan S., Yang J., Hao Y., et al. Resolvin D1 improves the resolution of inflammation via activating NF-κB p50/p50–mediated cyclooxygenase-2 expression in acute respiratory distress syndrome. J. Immunol. 2017;199:2043–2054. doi: 10.4049/jimmunol.1700315.
    1. Wang Q., Yan S.-F., Hao Y., Jin S.-W. Specialized pro-resolving mediators regulate alveolar fluid clearance during acute respiratory distress syndrome. Chin. Med. J. 2018;131:982–989. doi: 10.4103/0366-6999.229890.
    1. Sham H.P., Walker K.H., Abdulnour R.-E.E., Krishnamoorthy N., Douda D.N., Norris P.C., Barkas I., Benito-Figueroa S., Colby J.K., Serhan C.N., et al. 15-epi-Lipoxin A4, Resolvin D2, and Resolvin D3 induce NF-κB regulators in bacterial pneumonia. J. Immunol. 2018;200:2757–2766. doi: 10.4049/jimmunol.1602090.
    1. Sekheri M., El Kebir D., Edner N., Filep J.G. 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation. Proc. Natl. Acad. Sci. USA. 2020 doi: 10.1073/pnas.1920193117.
    1. Zhang H.-W., Wang Q., Mei H.-X., Zheng S.-X., Ali A.M., Wu Q.-X., Ye Y., Xu H.-R., Xiang S.-Y., Jin S.-W. RvD1 ameliorates LPS-induced acute lung injury via the suppression of neutrophil infiltration by reducing CXCL2 expression and release from resident alveolar macrophages. Int. Immunopharmacol. 2019;76:105877. doi: 10.1016/j.intimp.2019.105877.
    1. Dushianthan A., Cusack R., Burgess V.A., Grocott M.P., Calder P.C. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst. Rev. 2019 doi: 10.1002/14651858.CD012041.pub2.
    1. Hemilä H. Vitamin C and infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339.
    1. Hemilä H., Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD005532.pub3.
    1. Hemilä H., Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD000980.pub4.
    1. Cannell J.J., Vieth R., Umhau J.C., Holick M.F., Grant W.B., Madronich S., Garland C.F., Giovannucci E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006;134:1129–1140. doi: 10.1017/S0950268806007175.
    1. Jolliffe D.A., Griffiths C.J., Martineau A.R. Vitamin D in the prevention of acute respiratory infection: Systematic review of clinical studies. J. Steroid Biochem. Mol. Biol. 2013;136:321–329. doi: 10.1016/j.jsbmb.2012.11.017.
    1. Autier P., Mullie P., Macacu A., Dragomir M., Boniol M., Coppens K., Pizot C., Boniol M. Effect of vitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5:986–1004. doi: 10.1016/S2213-8587(17)30357-1.
    1. Martineau A.R., Jolliffe D.A., Greenberg L., Aloia J.F., Bergman P., Dubnov-Raz G., Esposito S., Ganmaa D., Ginde A.A., Goodall E.C., et al. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol. Assess. 2019;23:1–44. doi: 10.3310/hta23020.
    1. Rejnmark L., Bislev L.S., Cashman K.D., Eiríksdottir G., Gaksch M., Grübler M., Grimnes G., Gudnason V., Lips P., Pilz S., et al. Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data. PLoS ONE. 2017;12:e0180512. doi: 10.1371/journal.pone.0180512.
    1. Bergman P., Lindh Å.U., Björkhem-Bergman L., Lindh J.D. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2013;8:e65835. doi: 10.1371/journal.pone.0065835.
    1. Charan J., Goyal J.P., Saxena D., Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J. Pharmacol. Pharmacother. 2012;3:300. doi: 10.4103/0976-500X.103685.
    1. Meydani S.N., Leka L.S., Fine B.C., Dallal G.E., Keusch G.T., Singh M.F., Hamer D.H. Vitamin E and respiratory tract infections in elderly nursing home residents: A randomized controlled trial. JAMA. 2004;292:828–836. doi: 10.1001/jama.292.7.828.
    1. Wu D., Meydani S. Age-associated changes in immune function: Impact of vitamin E intervention and the underlying mechanisms. Endocr. Metab. Immune Disord. Drug Targets. 2014;14:283–289. doi: 10.2174/1871530314666140922143950.
    1. De la Fuente M., Hernanz A., Guayerbas N., Manuel Victor V., Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic. Res. 2008;42:272–280. doi: 10.1080/10715760801898838.
    1. Meydani S.N. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial. JAMA. 1997;277:1380–1386. doi: 10.1001/jama.1997.03540410058031.
    1. Gammoh N.Z., Rink L. Zinc in infection and inflammation. Nutrients. 2017;9:624. doi: 10.3390/nu9060624.
    1. Maares M., Haase H. Zinc and immunity: An essential interrelation. Arch. Biochem. Biophys. 2016;611:58–65. doi: 10.1016/j.abb.2016.03.022.
    1. Aggarwal R., Sentz J., Miller M.A. Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: A meta-analysis. Pediatrics. 2007;119:1120–1130. doi: 10.1542/peds.2006-3481.
    1. Roth D.E., Richard S.A., Black R.E. Zinc supplementation for the prevention of acute lower respiratory infection in children in developing countries: Meta-analysis and meta-regression of randomized trials. Int. J. Epidemiol. 2010;39:795–808. doi: 10.1093/ije/dyp391.
    1. Beck M.A., Levander O.A., Handy J. Selenium deficiency and viral infection. J. Nutr. 2003;133:1463S–1467S. doi: 10.1093/jn/133.5.1463S.
    1. Beck M., Handy J., Levander O. Host nutritional status: The neglected virulence factor. Trends Microbiol. 2004;12:417–423. doi: 10.1016/j.tim.2004.07.007.
    1. Food and Agriculture Organization of the United Nations . Europe and Central Asia Regional Overview of Food Insecurity 2016: The Food Insecurity Transition. FAO; Budapest, Hungary: 2017. pp. 1–44.
    1. Maggini S., Pierre A., Calder P. Immune function and micronutrient requirements change over the life course. Nutrients. 2018;10:1531. doi: 10.3390/nu10101531.
    1. Bailey R.L., West K.P., Jr., Black R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015;66:22–33. doi: 10.1159/000371618.
    1. World Health Organization. U.S. Centers for Disease Control and Prevention . Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database of Anaemia. WHO; Geneva, Switzerland: 2008. pp. 1–41.
    1. World Health Organization . The World Health Report 2002: Reducing Risks, Promoting Healthy Life. WHO; Geneva, Switzerland: 2002. pp. 1–248.
    1. Hilger J., Friedel A., Herr R., Rausch T., Roos F., Wahl D.A., Pierroz D.D., Weber P., Hoffmann K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014;111:23–45. doi: 10.1017/S0007114513001840.
    1. U.S. Institute of Medicine . Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press; Washington, DC, USA: 2011.
    1. US Centers for Disease Control and Prevention . Second National Report on Biochemical Indicators of Diet and Nutrition in the U.S. Population. CDC; Atlanta, GA, USA: 2012. pp. 1–484.
    1. Cashman K.D., Dowling K.G., Skrabakova Z., Gonzalez-Gross M., Valtuena J., De Henauw S., Moreno L., Damsgaard C.T., Michaelsen K.F., Molgaard C., et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016;103:1033–1044. doi: 10.3945/ajcn.115.120873.
    1. Hu Y., Chen J., Wang R., Li M., Yun C., Li W., Yang Y., Piao J., Yang X., Yang L. Vitamin D nutritional status and its related factors for Chinese children and adolescents in 2010–2012. Nutrients. 2017;9:1024. doi: 10.3390/nu9091024.
    1. Yun C., Chen J., He Y., Mao D., Wang R., Zhang Y., Yang C., Piao J., Yang X. Vitamin D deficiency prevalence and risk factors among pregnant Chinese women. Public Health Nutr. 2017;20:1746–1754. doi: 10.1017/S1368980015002980.
    1. Peter S., Friedel A., Roos F.F., Wyss A., Eggersdorfer M., Hoffmann K., Weber P. A systematic review of global alpha-tocopherol status as assessed by nutritional intake levels and blood serum concentrations. Int. J. Vitam. Nutr. Res. 2016;14:261–281. doi: 10.1024/0300-9831/a000281.
    1. Lykkesfeldt J., Poulsen H.E. Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br. J. Nutr. 2010;103:1251–1259. doi: 10.1017/S0007114509993229.
    1. García O., Ronquillo D., del Caamaño M., Camacho M., Long K., Rosado J.L. Zinc, vitamin A, and vitamin C status are associated with leptin concentrations and obesity in Mexican women: Results from a cross-sectional study. Nutr. Metab. 2012;9:59. doi: 10.1186/1743-7075-9-59.
    1. Villalpando S., Montalvo-Velarde I., Zambrano N., Carcia-Guerra A., Ramirez-Silva C.I., Shamah-Levy T., Rivera J.A. Vitamin A, and C and folate status in Mexican children under 12 years and women 12–49 years: A probabilistic national survey. Salud Publica Mex. 2003;45:S508–S519. doi: 10.1590/S0036-36342003001000007.
    1. García O., Ronquillo D., del Carmen Caamaño M., Martínez G., Camacho M., López V., Rosado J. Zinc, iron and vitamins A, C and E are associated with obesity, inflammation, lipid profile and insulin resistance in Mexican school-aged children. Nutrients. 2013;5:5012–5030. doi: 10.3390/nu5125012.
    1. Madruga de Oliveira A., Rondó P.H.C., Mastroeni S.S., Oliveira J.M. Plasma concentrations of ascorbic acid in parturients from a hospital in Southeast Brazil. Clin. Nutr. 2008;27:228–232. doi: 10.1016/j.clnu.2007.11.006.
    1. Ravindran R.D., Vashist P., Gupta S.K., Young I.S., Maraini G., Camparini M., Jayanthi R., John N., Fitzpatrick K.E., Chakravarthy U., et al. Prevalence and risk factors for vitamin C deficiency in north and south India: A two centre population based study in people aged 60 years and over. PLoS ONE. 2011;6:e28588. doi: 10.1371/journal.pone.0028588.
    1. Schleicher R.L., Carroll M.D., Ford E.S., Lacher D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES) Am. J. Clin. Nutr. 2009;90:1252–1263. doi: 10.3945/ajcn.2008.27016.
    1. Hughes K., New A.L., Lee B.L., Ong C.N. Plasma vitamins A, C and E in the general population of Singapore, 1993 to 1995. Ann. Acad. Med. Singapore. 1998;27:149–153.
    1. Hughes K., Ong C.N. Vitamins, selenium, iron, and coronary heart disease risk in Indians, Malays, and Chinese in Singapore. J. Epidemiol. Community Health. 1998;52:181–185. doi: 10.1136/jech.52.3.181.
    1. Pearson J., Pullar J., Wilson R., Spittlehouse J., Vissers M., Skidmore P., Willis J., Cameron V., Carr A. Vitamin C status correlates with markers of metabolic and cognitive health in 50-year-olds: Findings of the CHALICE cohort study. Nutrients. 2017;9:831. doi: 10.3390/nu9080831.
    1. Bird J., Murphy R., Ciappio E., McBurney M. Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients. 2017;9:655. doi: 10.3390/nu9070655.
    1. Bruins M.J., Bird J.K., Aebischer C.P., Eggersdorfer M. Considerations for secondary prevention of nutritional deficiencies in high-risk groups in high-income countries. Nutrients. 2018;10:47. doi: 10.3390/nu10010047.
    1. Gibson R.S., Heath A.-L.M., Limbaga M.L.S., Prosser N., Skeaff C.M. Are changes in food consumption patterns associated with lower biochemical zinc status among women from Dunedin, New Zealand? Br. J. Nutr. 2001;86:71–80. doi: 10.1079/BJN2001370.
    1. Baqui A.H., Black R.E., Fischer Walker C.L., Arifeen S., Zaman K., Yunus M., Wahed M.A., Caulfield L.E. Zinc supplementation and serum zinc during diarrhea. Indian J. Pediatr. 2006;73:493–497. doi: 10.1007/BF02759893.
    1. Combs G.F., Jr. Biomarkers of selenium status. Nutrients. 2015;7:2209–2236. doi: 10.3390/nu7042209.
    1. Stoffaneller R., Morse N. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients. 2015;7:1494–1537. doi: 10.3390/nu7031494.
    1. Stark K.D., Van Elswyk M.E., Higgins M.R., Weatherford C.A., Salem N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016;63:132–152. doi: 10.1016/j.plipres.2016.05.001.
    1. Carr A.C. Vitamin C in pneumonia and sepsis. In: Chen Q., Vissers M.C.M., editors. Vitamin C: New Biochemical and Functional Insights. CRC Press; Boca Raton, FL, USA: 2020. pp. 115–135.
    1. Hunt C., Chakravorty N.K., Annan G., Habibzadeh N., Schorah C.J. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int. J. Vit. Nutr. Res. 1994;64:212–219.
    1. Mochalkin N.I. Ascorbic acid in the complex treatment of patients with acute pneumonia. Voen. Meditsinskii Zhurnal. 1970;9:17–21.
    1. Institute of Medicine . Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. The National Academies Press; Washington, DC, USA: 2006.
    1. Ran L., Zhao W., Wang J., Wang H., Zhao Y., Tseng Y., Bu H. Extra dose of vitamin C based on a daily supplementation shortens the common cold: A meta-analysis of 9 randomized controlled trials. BioMed Res. Int. 2018 doi: 10.1155/2018/1837634.
    1. Institute of Medicine . Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. The National Academies Press; Washington, DC, USA: 2000.
    1. EFSA Panel on Dietetic Products Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010;8:1461.
    1. Food and Agriculture Organization of the United Nations . Fats and Fatty Acids in Human Nutrition: Report of An Expert Consultation: 10–14 November 2008, Geneva. Food and Agriculture Organization of the United Nations; Rome, Italy: 2010. Chapter 2: Summary of conclusions and dietary recommendations on total fat and fatty acids; pp. 9–20.
    1. Chinese Nutrition Society . Chinese Dietary Reference Intakes Summary (2013) People’s Medical Publishing House; Beijing, China: 2013. p. 16.

Source: PubMed

3
Subscribe