Cardiotoxicity and Cardiovascular Biomarkers in Patients With Breast Cancer: Data From the GeparOcto-GBG 84 Trial

Alexandra Maria Rüger, Andreas Schneeweiss, Sabine Seiler, Hans Tesch, Marion van Mackelenbergh, Frederik Marmé, Kristina Lübbe, Bruno Sinn, Thomas Karn, Elmar Stickeler, Volkmar Müller, Christian Schem, Carsten Denkert, Peter A Fasching, Valentina Nekljudova, Tania Garfias-Macedo, Gerd Hasenfuß, Wilhelm Haverkamp, Sibylle Loibl, Stephan von Haehling, Alexandra Maria Rüger, Andreas Schneeweiss, Sabine Seiler, Hans Tesch, Marion van Mackelenbergh, Frederik Marmé, Kristina Lübbe, Bruno Sinn, Thomas Karn, Elmar Stickeler, Volkmar Müller, Christian Schem, Carsten Denkert, Peter A Fasching, Valentina Nekljudova, Tania Garfias-Macedo, Gerd Hasenfuß, Wilhelm Haverkamp, Sibylle Loibl, Stephan von Haehling

Abstract

Background Patients with breast cancer can be affected by cardiotoxic reactions through cancer therapies. Cardiac biomarkers, like NT-proBNP (N-terminal pro-B-type natriuretic peptide) and high-sensitivity cardiac troponin T, might have predictive value. Methods and Results Echocardiography, ECG, hemodynamic parameters, NT-proBNP and high-sensitivity cardiac troponin T were assessed in 853 patients with early-stage breast cancer randomized in the German Breast Group GeparOcto-GBG 84 phase III trial. Patients received neo-adjuvant dose-dense, dose-intensified epirubicin, paclitaxel, and cyclophosphamide (iddEPC group, n=424) or paclitaxel, non-pegylated doxorubicin, and in triple negative breast cancer, (paclitaxel, non-pegylated doxorubicin, carboplatin group, n=429) treatment for 18 weeks. Patients positive for human epidermal growth receptor 2 (n=354, 41.5%) received monoclonal antibodies on top of allocated therapy; 119 (12.9%) of all patients showed a cardiotoxic reaction during therapy (15 [1.8%] using a more strict definition). Presence of cardiotoxic reactions was irrespective of treatment allocation (P=0.31). Small but significant increases in NT-proBNP developed early in patients with a cardiotoxic reaction as compared with those without in whom NT-proBNP rose only towards the end of therapy (P=0.04). High-sensitivity cardiac troponin T rose early in both groups. Logistic regression showed that NT-proBNP (odds ratio [OR], 1.03; 95% CI, 1.008-1.055; P=0.01) and hemoglobin (OR, 1.31; 95% CI, 1.05-1.63; P=0.02) measured at 6 weeks after treatment initiation were significantly associated with cardiotoxic reactions. Conclusions NT-proBNP and hemoglobin are significantly associated with cardiotoxic reactions in patients with early-stage breast cancer undergoing dose-dense and dose-intensified chemotherapy, but high-sensitivity cardiac troponin T is not. Registration URL: http://www.clinicaltrials.gov; Unique identifier: NCT02125344.

Keywords: biomarker; breast cancer; cardiotoxicity; cardio‐oncology; left ventricular ejection fraction.

Conflict of interest statement

Denkert holds stock interests with Sividon Diagnostics and patents of VMScope and received honoraria from Celgene, Teva, Novartis, Pfizer, MSD, Amgen, and Roche. Tesch received honoraria from Novartis and Roche. Loibl received research funding from Pfizer, Sanofi, Amgen, Roche, Novartis, Celgene, Teva, Astra Zeneca, Myriad, AbbVie, Vifor, and Sividon Diagnostics. von Haehling received honoraria from BRAHMS, Roche, and Vifor. Schem received honoraria from Astra Zeneca and Roche. Fasching received honoraria from Amgen, Novartis, Pfizer, Celgene, Roche, Teva, and Astra Zeneca. Schneeweiss received honoraria from Roche, Astra Zeneca, Celgene, Pfizer, Amgen, and Novartis. Marmé received honoraria from AstraZeneca, Amgen, CureVec, Celgene, Clovis Oncology, Eisai, Genomic Health, Novartis, MSD, Pfizer, Roche, and Tesaro. van Mackelenbergh received honoraria from AstraZeneca, Amgen, Lily, Genomic Health, and Novartis. Rüger is also employed by Vifor. Lübbe received honoraria from Lily, Roche, Novartis, Genomic Health, and Pfizer. Müller received honoraria from Amgen, Astra Zeneca, Daiichi‐Sankyo, Eisai, Pfizer, MSD, Novartis, Roche, Teva, Seattle Genetics, Genomic Health, Hexal, Roche, Pierre Fabre, ClinSol, Lilly, Tesaro, Nektar, and Genentech. Seiler received honoraria from Amgen, Hexal, Roche, Novartis, and Mundipharma. The remaining authors have no disclosures to report.

Figures

Figure 1. Study design GeparOcto‐GBG 84 trial…
Figure 1. Study design GeparOcto‐GBG 84 trial (phase III).
HER2 indicates human epidermal growth receptor 2; iddEPC, neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide; NPLD, non‐pegylated doxorubicin; R, randomization; and PM(Cb), paclitaxel, non‐pegylated doxorubicin, carboplatin.
Figure 2. Consort statement GeparOcto‐GBG 84 trial…
Figure 2. Consort statement GeparOcto‐GBG 84 trial (phase III).
iddEPC indicates neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide; and PM(Cb), paclitaxel, non‐pegylated doxorubicin, carboplatin.
Figure 3. NT‐proBNP during therapy.
Figure 3. NT‐proBNP during therapy.
A, NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide) (cardiotoxicity vs non‐cardiotoxicity), (B) NT‐proBNP (neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide vs paclitaxel, non‐pegylated doxorubicin, carboplatin). NT‐proBNP as assessed by all (red), cardiotoxicity (blue bar) vs non‐cardiotoxicity (grey bar) and between all (red), epirubicin, paclitaxel, cyclophosphamide (light blue bar) and paclitaxel, non‐pegylated doxorubicin, carboplatin (light grey bar) group. Analysis is shown as mean±SD and independent samples t‐test shown by P values. The time points of assessment are baseline, after 6 weeks, and at the end of therapy. iddEPC indicates neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide; NT‐proBNP, N‐terminal pro‐B‐type natriuretic peptide; and PM(Cb), paclitaxel, non‐pegylated doxorubicin, carboplatin.
Figure 4. High‐sensitivity cardiac troponin T during…
Figure 4. High‐sensitivity cardiac troponin T during therapy.
A, High‐sensitivity cardiac troponin T (hsTrop T) (cardiotoxicity vs non‐cardiotoxicity); (B) High‐sensitivity cardiac troponin T (neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide vs paclitaxel, non‐pegylated doxorubicin, carboplatin). High‐sensitivity cardiac troponin T as assessed by all (red), cardiotoxicity (blue bar) vs non‐cardiotoxicity (grey bar) and between all (red), EPC (light blue bar) and PM(Cb) (light grey bar) group. Analysis is shown as mean±SD and independent samples t‐test shown by P values. The time points of assessment are baseline, after 6 weeks, and at the end of therapy. iddEPC indicates neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide; hsTrop T, high‐sensitivity cardiac troponin T; and PM(Cb), paclitaxel, non‐pegylated doxorubicin, carboplatin.
Figure 5. Hemoglobin during therapy.
Figure 5. Hemoglobin during therapy.
A, Hemoglobin (cardiotoxicity vs non‐cardiotoxicity); (B) Hemoglobin (neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide vs paclitaxel, non‐pegylated doxorubicin, carboplatin). Hemoglobin as assessed by all (red), cardiotoxicity (blue bar) vs non‐cardiotoxicity (grey bar) and between all (red), EPC (light blue bar) and PM(Cb) (light grey bar) group. Analysis is shown as mean±SD and independent samples t‐test shown by P values. The time points of assessment are baseline, after 6 weeks, and at the end of therapy. iddEPC indicates neo‐adjuvant dose‐dense, dose‐intensified epirubicin, paclitaxel, and cyclophosphamide; and PM(Cb), paclitaxel, non‐pegylated doxorubicin, carboplatin.

References

    1. Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz‐Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, et al. Cardiovascular disease and breast cancer: where these entities intersect. A scientific statement from the American Heart Association. Circulation. 2018;137:e30–e66.
    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre AL, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
    1. Ross JS, Fletcher JA. The HER‐2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells. 1998;16:413–428.
    1. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene. Science. 1987;235:177–182.
    1. Jawa Z, Perez RM, Garlie L, Singh M, Qamar R, Khandheria BK, Jahangir A, Shi Y. Risk factors of trastuzumab‐induced cardiotoxicity in breast cancer: a meta‐analysis. Medicine (Baltimore). 2016;95:e5195.
    1. Krop IE, Suter TM, Dang CT, Dirix L, Romieu G, Zamagni C, Citron ML, Campone M, Xu N, Smitt M, et al. Feasibility and cardiac safety of trastuzumab emtansine after anthracycline‐based chemotherapy as (neo)adjuvant therapy for human epidermal growth factor receptor 2‐positive early‐stage breast cancer. J Clin Oncol. 2015;33:1136–1142.
    1. Moslehi J. Cardiovascluar toxic effects of targeted cancer therapies. N Engl J Med. 2016;375:15.
    1. Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol. 2007;25:3808–3815.
    1. Guglin M, Hartlage G, Reynolds C, Chen R, Patel V. Trastuzumab‐induced cardiomyopathy: not as benign as it looks? A retrospective study. J Card Fail. 2009;15:651–657.
    1. Menna P, Paz OG, Chello M, Covino E, Salvatorelli E, Minotti G. Anthracycline cardiotoxicity. Expert Opin Drug Saf. 2012;11(suppl 1):S21–S36.
    1. Slamon DJ, Leyland‐Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–792.
    1. Ewer MS, Ewer SM. Troponin I provides insight into cardiotoxicity and the anthracycline–trastuzumab interaction. J Clin Oncol. 2010;28:3901–3904.
    1. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12:547–558.
    1. Cramer L, Hildebrandt B, Kung T, Wichmann K, Springer J, Doehner W, Sandek A, Valentova M, Stojakovic T, Scharnagl H, et al. Cardiovascular function and predictors of exercise capacity in patients with colorectal cancer. J Am Coll Cardiol. 2014;64:1310–1319.
    1. Anker MS, Ebner N, Hildebrandt B, Springer J, Sinn M, Riess H, Anker SD, Landmesser U, Haverkamp W, von Haehling S. Resting heart rate is an independent predictor of death in patients with colorectal, pancreatic, and non‐small cell lung cancer: results of a prospective cardiovascular long‐term study. Eur J Heart Fail. 2016;18:1524–1534.
    1. Ameri P, Canepa M, Anker MS, Belenkov Y, Bergler‐Klein J, Cohen‐Solal A, Farmakis D, Lopez‐Fernandez T, Lainscak M, Pudil R, et al.; Heart Failure Association Cardio‐Oncology Study Group of the European Society of Cardiology . Cancer diagnosis in patients with heart failure: epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail. 2018;20:879–887.
    1. Schneeweis A, Möbus V, Tesch H, Hanusch C, Denkert C, Lübbe K, Huober J, Klare P, Kümmel S, Untch M, et al. Intense dose‐dense epirubicin, paclitaxel, cyclophosphamide versus weekly paclitaxel, liposomal doxorubicin (plus carboplatin in triple‐negative breast cancer) for neoadjuvant treatment of high‐risk early breast cancer (GeparOcto GBG 84): a randomized phase III trial. Eur J Cancer. 2019;106:181–192.
    1. Aapro M, Beguin Y, Bokemeyer C, Dicato M, Gascon P, Glaspy J, Hofmann A, Link H, Littlewood T, Ludwig H, et al.; on behalf of the ESMO Guidelins Committee . Management of anaemia and iron deficiency in patients with cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 2018;29:iv96–iv110.
    1. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, Lamantia G, Colombo N, Cortinovis S, Dessanai MA, et al. Trastuzumab‐induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28:3910–3916.
    1. Cardinale D, Sandri MT. Role of biomarkers in chemotherapy‐induced cardiotoxicity. Prog Cardiovasc Dis. 2010;53:121–129.
    1. Zardavas D, Suter TM, Van Veldhuisen DJ, Steinseifer J, Noe J, Lauer S, Al‐Sakaff N, Piccart‐Gebhart MJ, de Azambuja E. Role of troponins I and T and N‐terminal prohormone of brain natriuretic peptide in monitoring cardiac safety of patients with early‐stage human epidermal growth factor receptor 2‐positive breast cancer receiving trastuzumab: a herceptin adjuvant study cardiac marker substudy. J Clin Oncol. 2017;35:878–884.
    1. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, Cinieri S, Martinelli G, Cipolla CM, Fiorentini C. Left ventricular dysfunction predicted by early troponin I release after high‐dose chemotherapy. J Am Coll Cardiol. 2000;36:517–522.
    1. Ponde N, Bradbury I, Lambertini M, Ewer M, Campbell C, Ameels H, Zardavas D, Di Cosimo S, Baselqa J, Huober J, et al. Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib‐induced cardiotoxicity in patients with HER2‐positive early‐stage breast cancer: a NeoALTTO sub‐study (BIG 1–06). Breast Cancer Res Treat. 2018;168:631–638.
    1. Pichon MF, Cvitkovic F, Hacene K, Delaunay J, Lokiec F, Collignon MA, Pecking AP. Drug‐induced cardiotoxicity studied by longitudinal B‐type natriuretic peptide assays and radionuclide ventriculography. In Vivo. 2005;19:567–576.
    1. Feola M, Garrone O, Occelli M, Francini A, Biggi A, Visconti G, Albrile F, Bobbio M, Merlano M. Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol. 2011;148:194–198.
    1. Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, Sill H. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82:218–222.
    1. Adamson PD, Hall P, Lang N, Macpherson I, Oikonomidou O, Maclean M, Lewis S, McVicars H, Newby D, Mills N, et al. Dynamic changes in high sensitivity cardiac troponin I in response to anthracycline‐based chemotherapy: a pilot study for the cardiac care trial. J Am Coll Cardiol. 2018;71:11.
    1. Kitayama H, Kondo T, Sugiyama J, Kurimoto K, Nishino Y, Kawada M, Hirayama M, Tsuji Y. High‐sensitive troponin T assay can predict anthracycline‐ and trastuzumab‐induced cardiotoxicity in breast cancer patients. Breast Cancer. 2017;24:774–782.
    1. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, Leon M, Civelli M, Martinelli G, Cipolla CM. N‐terminal pro‐B‐type natriuretic peptide after high‐dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51:1405–1410.
    1. Florescu M, Cinteza M, Vinereanu D. Chemotherapy‐induced cardiotoxicity. Maedica (Bucur). 2013;8:59–67.
    1. Seidman A, Hudis C, Pierri MC, Shak S, Paton V, Ashby M, Murphy M, Stewart SJ, Keefe D. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–1221.
    1. Ky B, Putt M, Sawaya H, French B, Januzzi JL, Sebag IA, Plana JC, Cohen V, Banch J, Carver JR, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63:809–816.
    1. Wehner GJ, Jing L, Haggerty CM, Suever JD, Leader JB, Hartzel DN, Kirchner HL, Manus JNA, James N, Ayar Z, et al. Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie? Eur Heart J. 2020;41:1249–1257.
    1. Vejpongsa P, Yeh ET. Prevention of anthracycline‐induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64:938–945.
    1. Force T, Kerkela R. Cardiotoxicity of the new cancer therapeutics—mechanisms of, and approaches to, the problem. Drug Discov Today. 2008;13:778–784.
    1. Bowles EJ, Wellman R, Feigelson HS, Onitilo AA, Freedman AN, Delate T, Allen LA, Nekhlyudov L, Goddard KA, Davis RL, et al.; Pharmacovigilance Study Team . Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104:1293–1305.
    1. Zamorano JL, Lancellotti P, Rodriguez MD, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lopez Fernandez T, et al.; ESC Scientific Document Group . 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–2801.
    1. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, Cipolla CM. Cardiotoxicity of anticancer treatments: epidemiology, detection and management. CA Cancer J Clin. 2016;66:309–325.
    1. Aboumsallem JP, Moslehi J, de Boer RA. Reverse cardio‐oncology: Cancer development in patients with cardiovascular disease. J Am Heart Assoc. 2020;9:e013754 DOI: 10.1161/JAHA.119.013754.

Source: PubMed

3
Subscribe