The Association of Adiponectin and Visceral Fat with Insulin Resistance and β-Cell Dysfunction

Hyun Uk Moon, Kyoung Hwa Ha, Seung Jin Han, Hae Jin Kim, Dae Jung Kim, Hyun Uk Moon, Kyoung Hwa Ha, Seung Jin Han, Hae Jin Kim, Dae Jung Kim

Abstract

Background: Obesity is a risk factor for metabolic abnormalities. We investigated the relationship of adiponectin levels and visceral adiposity with insulin resistance and β-cell dysfunction.

Methods: This cross-sectional study enrolled 1,347 participants (501 men and 846 women aged 30-64 years) at the Cardiovascular and Metabolic Diseases Etiology Research Center. Serum adiponectin levels and visceral fat were measured using enzyme-linked immunosorbent assay kits and dual-energy X-ray absorptiometry, respectively. Insulin resistance was evaluated using the homeostatic model assessment of insulin resistance (HOMA-IR) and Matsuda insulin sensitivity index. β-cell dysfunction was evaluated using the homeostatic model assessment of β-cell function (HOMA-β), insulinogenic index, and disposition index.

Results: Regarding insulin resistance, compared with individuals with the highest adiponectin levels and visceral fat mass < 75th percentile, the fully adjusted odds ratios (ORs) for HOMA-IR ≥ 2.5 and Matsuda index < 25th percentile were 13.79 (95% confidence interval, 7.65-24.83) and 8.34 (4.66-14.93), respectively, for individuals with the lowest adiponectin levels and visceral fat ≥ 75th percentile. Regarding β-cell dysfunction, the corresponding ORs for HOMA-β < 25th percentile, insulinogenic index < 25th percentile, and disposition index < 25th percentile were 1.20 (0.71-2.02), 1.01 (0.61-1.66), and 1.87 (1.15-3.04), respectively.

Conclusion: Low adiponectin levels and high visceral adiposity might affect insulin resistance and β-cell dysfunction.

Keywords: Adiponectin; Insulin Resistance; Insulin Secretion; Visceral Fat.

Conflict of interest statement

Disclosure: The authors have no potential conflicts of interest to disclose.

Figures

Fig. 1. ORs for insulin resistance and…
Fig. 1. ORs for insulin resistance and β-cell dysfunction according to adiponectin levels and VAT mass. The analyses were adjusted for potential confounders such as gender, age, BMI, hs-CRP, triglyceride, and physical activity.
OR = odds ratio, VAT = visceral adipose tissue, BMI = body mass index, hs-CRP = high-sensitivity C-reactive protein, HOMA-IR = homeostatic model assessment of insulin resistance, HOMA-β = homeostatic model assessment of β-cell function, T1 = tertile 1, T2 = tertile 2, T3 = tertile 3. aP < 0.05.

References

    1. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–846.
    1. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–18.
    1. Balsan GA, Vieira JL, Oliveira AM, Portal VL. Relationship between adiponectin, obesity and insulin resistance. Rev Assoc Med Bras (1992) 2015;61(1):72–80.
    1. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11-12):741–751.
    1. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.
    1. Matsuzawa Y. Establishment of a concept of visceral fat syndrome and discovery of adiponectin. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(2):131–141.
    1. Kim AY, Park YJ, Pan X, Shin KC, Kwak SH, Bassas AF, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6(1):7585.
    1. Patané G, Caporarello N, Marchetti P, Parrino C, Sudano D, Marselli L, et al. Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation. Acta Diabetol. 2013;50(6):851–857.
    1. Matsushita Y, Nakagawa T, Yamamoto S, Kato T, Ouchi T, Kikuchi N, et al. Adiponectin and visceral fat associate with cardiovascular risk factors. Obesity (Silver Spring) 2014;22(1):287–291.
    1. Cho SA, Joo HJ, Cho JY, Lee SH, Park JH, Hong SJ, et al. Visceral fat area and serum adiponectin level predict the development of metabolic syndrome in a community-based asymptomatic population. PLoS One. 2017;12(1):e0169289.
    1. Okauchi Y, Nishizawa H, Funahashi T, Ogawa T, Noguchi M, Ryo M, et al. Reduction of visceral fat is associated with decrease in the number of metabolic risk factors in Japanese men. Diabetes Care. 2007;30(9):2392–2394.
    1. Bi X, Seabolt L, Shibao C, Buchowski M, Kang H, Keil CD, et al. DXA-measured visceral adipose tissue predicts impaired glucose tolerance and metabolic syndrome in obese Caucasian and African-American women. Eur J Clin Nutr. 2015;69(3):329–336.
    1. Inoue M, Maehata E, Yano M, Taniyama M, Suzuki S. Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metabolism. 2005;54(3):281–286.
    1. Weber KS, Strassburger K, Pacini G, Nowotny B, Müssig K, Szendroedi J, et al. Circulating adiponectin concentration is inversely associated with glucose tolerance and insulin secretion in people with newly diagnosed diabetes. Diabet Med. 2017;34(2):239–244.
    1. Han SJ, Boyko EJ, Fujimoto WY, Kahn SE, Leonetti DL. Low plasma adiponectin concentrations predict increases in visceral adiposity and insulin resistance. J Clin Endocrinol Metab. 2017;102(12):4626–4633.
    1. Oka R, Yagi K, Sakurai M, Nakamura K, Nagasawa SY, Miyamoto S, et al. Impact of visceral adipose tissue and subcutaneous adipose tissue on insulin resistance in middle-aged Japanese. J Atheroscler Thromb. 2012;19(9):814–822.
    1. Scheuer SH, Færch K, Philipsen A, Jørgensen ME, Johansen NB, Carstensen B, et al. Abdominal fat distribution and cardiovascular risk in men and women with different levels of glucose tolerance. J Clin Endocrinol Metab. 2015;100(9):3340–3347.
    1. Shim JS, Song BM, Lee JH, Lee SW, Park JH, Choi DP, et al. Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort: study protocol and results of the first 3 years of enrollment. Epidemiol Health. 2017;39:e2017016.
    1. Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring) 2012;20(6):1313–1318.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–1470.
    1. Bergman RN, Belfiore F, Molinatti GM. In: Measurement of Insulin Resistance and Beta-cell Function: the HOMA and CIGMA Approach. Turner R, Levy J, Rudenski A, Hammersley M, Page R, editors. Berlin: Karger Publishers; 1993. Current topics in diabetes research; pp. 66–75.
    1. Goedecke JH, Dave JA, Faulenbach MV, Utzschneider KM, Lambert EV, West S, et al. Insulin response in relation to insulin sensitivity: an appropriate beta-cell response in black South African women. Diabetes Care. 2009;32(5):860–865.
    1. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335–341.
    1. Yamada C, Mitsuhashi T, Hiratsuka N, Inabe F, Araida N, Takahashi E. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J Diabetes Investig. 2011;2(5):373–376.
    1. Utzschneider KM, Carr DB, Hull RL, Kodama K, Shofer JB, Retzlaff BM, et al. Impact of intra-abdominal fat and age on insulin sensitivity and beta-cell function. Diabetes. 2004;53(11):2867–2872.
    1. Wagenknecht LE, Langefeld CD, Scherzinger AL, Norris JM, Haffner SM, Saad MF, et al. Insulin sensitivity, insulin secretion, and abdominal fat: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study. Diabetes. 2003;52(10):2490–2496.
    1. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999. Biochem Biophys Res Commun. 2012;425(3):560–564.
    1. Halleux CM, Takahashi M, Delporte ML, Detry R, Funahashi T, Matsuzawa Y, et al. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophys Res Commun. 2001;288(5):1102–1107.
    1. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–2099.
    1. Nakamura A, Miyoshi H, Ukawa S, Nakamura K, Nakagawa T, Terauchi Y, et al. Serum adiponectin and insulin secretion: a direct or inverse association? J Diabetes Investig. 2018;9(5):1106–1109.
    1. Winzell MS, Nogueiras R, Dieguez C, Ahrén B. Dual action of adiponectin on insulin secretion in insulin-resistant mice. Biochem Biophys Res Commun. 2004;321(1):154–160.
    1. Staiger K, Stefan N, Staiger H, Brendel MD, Brandhorst D, Bretzel RG, et al. Adiponectin is functionally active in human islets but does not affect insulin secretory function or beta-cell lipoapoptosis. J Clin Endocrinol Metab. 2005;90(12):6707–6713.
    1. Okamoto M, Ohara-Imaizumi M, Kubota N, Hashimoto S, Eto K, Kanno T, et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia. 2008;51(5):827–835.
    1. Roh E, Kim KM, Park KS, Kim YJ, Chun EJ, Choi SH, et al. Comparison of pancreatic volume and fat amount linked with glucose homeostasis between healthy Caucasians and Koreans. Diabetes Obes Metab. 2018;20(11):2642–2652.
    1. Basu R, Dalla Man C, Campioni M, Basu A, Klee G, Toffolo G, et al. Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes. 2006;55(7):2001–2014.
    1. Gannon M, Kulkarni RN, Tse HM, Mauvais-Jarvis F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol Metab. 2018;15(9):82–91.
    1. Mauvais-Jarvis F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol Metab. 2016;27(12):844–855.
    1. Rössner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P, et al. Adipose tissue determinations in cadavers--a comparison between cross-sectional planimetry and computed tomography. Int J Obes. 1990;14(10):893–902.
    1. Jung SH, Ha KH, Kim DJ. Visceral fat mass has stronger associations with diabetes and prediabetes than other anthropometric obesity indicators among Korean adults. Yonsei Med J. 2016;57(3):674–680.
    1. Snijder MB, Visser M, Dekker JM, Seidell JC, Fuerst T, Tylavsky F, et al. The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. Int J Obes Relat Metab Disord. 2002;26(7):984–993.

Source: PubMed

3
Subscribe