NSAIDs, Opioids, Cannabinoids and the Control of Pain by the Central Nervous System

Horacio Vanegas, Enrique Vazquez, Victor Tortorici, Horacio Vanegas, Enrique Vazquez, Victor Tortorici

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) act upon peripheral tissues and upon the central nervous system to produce analgesia. A major central target of NSAIDs is the descending pain control system. The rostral structures of the descending pain control system send impulses towards the spinal cord and regulate the transmission of pain messages. Key structures of the descending pain control system are the periaqueductal gray matter (PAG) and the rostral ventromedial region of the medulla (RVM), both of which are critical targets for endogenous opioids and opiate pharmaceuticals. NSAIDs also act upon PAG and RVM to produce analgesia and, if repeatedly administered, induce tolerance to themselves and cross-tolerance to opioids. Experimental evidence shows that this is due to an interaction of NSAIDs with endogenous opioids along the descending pain control system. Analgesia by NSAIDs along the descending pain control system also requires an activation of the CB1 endocannabinoid receptor. Several experimental approaches suggest that opioids, NSAIDs and cannabinoids in PAG and RVM cooperate to decrease GABAergic inhibition and thus enhance the descending flow of impulses that inhibit pain.

Keywords: NSAID; PAG; RVM; cannabinoid; descending pain control system; opioid.

Figures

Figure 1
Figure 1
Proposed model for the interaction of NSAIDs, opioids and cannabinoids in the descending pain control system to induce analgesia. Minus symbols indicate inhibition. Inhibition of the cyclooxygenases (COX) by NSAIDs reduces the synthesis of prostaglandins (PG) and thromboxanes (TX) and thus increases the availability of arachidonic acid (AA). Opioids also increase the availability of AA by activating the phospholipase A2 via the µ-opioid receptor. Via the 12-lipoxygenases (12-LOX) AA is transformed into hepoxilins, which indirectly inhibit GABA release. By inhibiting COX and FAAH the NSAIDs spare AEA and 2-AG, which bind to the CB1 receptor (The role of the CB2 receptor in this model has not been established.) and thus inhibit GABA release. Removal of inhibition by GABA enhances the activity of output neurons that inhibit pain.

References

    1. Fields H.L. Pain. McGraw-Hill; New York, NY, USA: 1987.
    1. Fields H.L., Basbaum A.I. Brainstem control of spinal pain transmission neurons. Annu. Rev. Physiol. 1978;40:217–248.
    1. Ren K., Dubner R. Enhanced descending modulation of nociception in rats with persistent hindpaw inflammation. J. Neurophysiol. 1996;76:3025–3037.
    1. Schaible H.-G., Neugebauer V., Cervero F., Schmidt R.F. Changes in tonic descending inhibition of spinal neurons with articular input during the development of acute arthritis in the cat. J. Neurophysiol. 1991;66:1021–1032.
    1. Danziger N., Weil-Fugazza J., Le Bars D., Bouhassira D. Stage-dependent changes in the modulation of spinal nociceptive neuronal activity during the course of inflammation. Eur. J. Neurosci. 2001;13:230–240.
    1. Morgan M.M., Gold M.S., Liebeskind J.C., Stein C. Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat. Brain Res. 1991;545:17–23.
    1. Kovelowski C.J., Ossipov M.H., Sun H., Lai J., Malan T.P., Porreca F. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain. 2000;87:265–273.
    1. Pertovaara A., Wei H., Hämäläinen M.M. Lidocaine in the rostroventromedial medulla and the periaqueductal gray attenuates allodynia in neuropathic rats. Neurosci. Lett. 1996;218:127–130.
    1. Burgess S.E., Gardell L.R., Ossipov M.H., Malan T.P., Vanderah T.W., Lai J., Porreca F. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J. Neurosci. 2002;22:5129–5136.
    1. Vanegas H., Schaible H.-G. Descending control of persistent pain: Inhibitory or facilitatory? Brain Res. Rev. 2004;46:295–309. doi: 10.1016/j.brainresrev.2004.07.004.
    1. Fields H. State-dependent opioid control of pain. Nat. Rev. Neurosci. 2004;5:565–575.
    1. Hohmann A.G., Suplita R.L., Bolton N.M., Neely M.H., Fegley D., Mangieri R., Krey J.F., Walker J.M., Holmes P.V., Crystal J.D., Duranti A., Tontini A., Mor M., Trazia G., Piomelli D. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435:1108–1112.
    1. Wessendorf M.W., Vaughan C.W., Vanegas H. Rethinking the PAG and RVM: Supraspinal modulation of nociception by opioids and non-opioids. In: Flor H., Kalso E., Dostrovsky J.O., editors. Proceedings of the 11th World Congress on Pain; Seattle, WA, USA: IASP Press; 2006. pp. 311–320.
    1. Fields H.L., Vanegas H., Hentall I.D., Zorman G. Evidence that disinhibition of brain stem neurones contributes to morphine analgesia. Nature. 1983;306:684–686.
    1. Heinricher M.M., Morgan M.M., Fields H.L. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience. 1992;48:533–543.
    1. Yaksh T.L., Yeung J.C., Rudy T.A. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: Observation of differential effects within the periaqueductal gray. Brain Res. 1976;114:83–103.
    1. Bodnar R.J., Williams C.L., Lee S.J., Pasternak G.W. Role of μ1-opiate receptors in supraspinal opiate analgesia: A microinjection study. Brain Res. 1988;447:25–34.
    1. Smith D.J., Perrotti J.M., Crisp T., Cabral M.E., Long J.T., Scalzitti J.M. The mu opiate receptor is responsible for descending pain inhibition originating in the periaqueductal gray region of the rat brain. Eur. J. Pharmacol. 1988;156:47–54.
    1. Rossi G.C., Pasternak G.W., Bodnar R.J. μ and δ opioid synergy between the periaqueductal gray and the rostro-ventral medulla. Brain Res. 1994;665:85–93.
    1. Fang F.G., Haws C.M., Drasner K., Williamson A., Fields H.L. Opioid peptides (DAGO-enkephalin, dynorphin A(1-13), BAM 22P) microinjected into the rat brainstem: comparison of their antinociceptive effect and their effect on neuronal firing in the rostral ventromedial medulla. Brain Res. 1989;501:116–128.
    1. Brunton L.L., Lazo J.S., Parker K.L. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11st ed. McGraw-Hill; New York, NY, USA: 2006.
    1. Menassé R., Hedwall P.R., Kraetz J., Pericin C., Riesterer L., Sallmann A., Ziel R., Jaques R. Pharmacological properties of diclofenac sodium and its metabolites. Scand. J. Rheumatol. 1978;7(Suppl. 22):5–16.
    1. Vane J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 1971;231:232–235.
    1. Campos C., de Gregorio R., Garcia-Nieto R., Gago F., Ortiz P., Alemany S. Regulation of cyclooxygenase activity by metamizol. Eur. J. Pharmacol. 1999;378:339–347.
    1. Pierre S.C., Schmidt R., Brenneis C., Michaelis M., Geisslinger G., Scholich K. Inhibition of cyclooxygenases by dipyrone. Br. J. Pharmacol. 2007;151:494–503.
    1. Björkman R.L., Hedner T., Hallman K.M., Henning M., Hedner J. Localization of the central antinociceptive effects of diclofenac in the rat. Brain Res. 1992;590:66–73.
    1. Tortorici V., Vanegas H. Putative role of medullary off- and on-cells in the antinociception produced by dipyrone (metamizol) administered systemically or microinjected into PAG. Pain. 1994;57:197–205.
    1. Tortorici V., Vanegas H. Antinociception induced by systemic or PAG-microinjected lysine-acetylsalicylate in rats: Effects on tail-flick related activity of medullary off- and on-cells. Eur. J. Neurosci. 1995;7:1857–1865.
    1. Jones S.L. Dipyrone into the nucleus raphe magnus inhibits the rat nociceptive tail-flick reflex. Eur. J. Pharmacol. 1996;318:37–40.
    1. Pini L.A., Vitale G., Sandrini M. Serotonin and opiate involvement in the antinociceptive effect of acetylsalicylic acid. Pharmacology. 1997;54:84–91.
    1. Tortorici V., Vasquez E., Vanegas H. Naloxone partial reversal of the antinociception produced by dipyrone microinjected in the periaqueductal gray of rats: Possible involvement of medullary off- and on-cells. Brain Res. 1996;725:106–110.
    1. Vazquez E., Hernandez N., Escobar W., Vanegas H. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats. Brain Res. 2005;1048:211–217. doi: 10.1016/j.brainres.2005.04.083.
    1. Pernia-Andrade A.J., Tortorici V., Vanegas H. Induction of opioid tolerance by lysine-acetylsalicylate in rats. Pain. 2004;111:191–200.
    1. Vanegas H., Tortorici V., Eblen-Zajjur A., Vasquez E. PAG-microinjected dipyrone (metamizol) inhibits responses of spinal dorsal horn neurons to natural noxious stimulation in rats. Brain Res. 1997;759:171–174.
    1. Vazquez E., Escobar W., Ramirez K., Vanegas H. A nonopioid analgesic acts upon the PAG-RVM axis to reverse inflammatory hyperalgesia. Eur. J. Neurosci. 2007;25:471–479.
    1. Vasquez E., Vanegas H. The antinociceptive effect of PAG-microinjected dipyrone in rats is mediated by endogenous opioids of the rostral ventromedial medulla. Brain Res. 2000;854:249–252.
    1. Siuciak J.A., Advokat C. Tolerance to morphine microinjections in the periaqueductal gray (PAG) induces tolerance to systemic, but not intrathecal morphine. Brain Res. 1987;424:311–319.
    1. Jacquet Y.F., Lajtha A. The periaqueductal gray: site of morphine analgesia and tolerance as shown by 2-way cross tolerance between systemic and intracerebral injections. Brain Res. 1976;103:501–513.
    1. Tortorici V., Robbins C.S., Morgan M.M. Tolerance to the antinociceptive effect of morphine microinjections into the ventral but not lateral-dorsal periaqueductal gray of the rat. Behav. Neurosci. 1999;113:833–839.
    1. Morgan M.M., Clayton C.C., Boyer-Quick J.S. Differential susceptibility of the PAG and RVM to tolerance to the antinociceptive effect of morphine in the rat. Pain. 2005;113:91–98.
    1. Lane D.A., Patel P.A., Morgan M.M. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Neuroscience. 2005;135:227–234.
    1. Tsiklauri N., Viatchenko-Karpinski V., Voitenko N., Tsagareli M.G. Non-opioid tolerance in juvenile and adult rats. Eur. J. Pharmacol. 2010;629:68–72.
    1. Tortorici V., Vanegas H. Opioid tolerance induced by metamizol (dipyrone) microinjections into the periaqueductal gray of rats. Eur. J. Neurosci. 2000;12:4074–4080.
    1. Rainsford K.D. Ibuprofen: Pharmacology, efficacy and safety. Immunopharmacology. 2009;17:275–342.
    1. Fuh J.-L., Wang S.-J., Lu S.-R., Juang K.-D. Does medication overuse headache represent a behavior of dependence? Pain. 2005;119:49–55. doi: 10.1016/j.pain.2005.09.034.
    1. Pullar T., Myall O., Haigh J.R.M., Lowe J.R., Dixon J.S., Bird H.A. The effect of indomethacin on the psychomotor function of patients with rheumatic disease. Br. J. Rheumatol. 1988;27:227–229.
    1. Roberts M.S., Owen S.G., Friesen W.T., Francis H., Flux W. Community Surveillance Study—Perceived response of rheumatoid arthritis patients to NSAIDs: In Non-steroidal Anti-inflammatory Drugs. Basis for Variability in Response. Agents Actions Suppl. 1985;17:41–54.
    1. Limmroth V., Katsarava Z. Medication overuse headache. Curr. Opin. Neurol. 2004;17:301–306.
    1. Walker J.S., Levy G. Effect of multiple dosing on the analgesic action of diflunisal in rats. Life Sci. 1990;46:737–742.
    1. Walker J.S. NSAID: An update on their analgesic effects. Clin. Exp. Pharmacol. Physiol. 1995;22:855–860.
    1. Wiesenfeld-Hallin Z., Alster P., Grass S., Hoffmann O., de Araujo Lucas G., Plesan A., Xu X.-J. Opioid sensitivity in antinociception: role of anti-opioid systems with emphasis on cholecystokinin and NMDA receptors. Prog. Pain Res. Manage. 1999;14:237–252.
    1. Watkins L.R., Kinscheck I.B., Mayer D.J. Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science. 1984;224:395–396.
    1. Dourish C.T., O'Neill M.F., Coughlan J., Kitchener S.J., Hawley D., Iversen S.D. The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur. J. Pharmacol. 1990;176:35–44.
    1. Xu X.-J., Wiesenfeld-Hallin Z., Hughes J., Horwell D.C., Hökfelt T. CI988, a selective antagonist of cholecystokininB receptors, prevents morphine tolerance in the rat. Br. J. Pharmacol. 1992;105:591–596.
    1. Hoffmann O., Wiesenfeld-Hallin Z. The CCK-B receptor antagonist CI 988 reverses tolerance to morphine in rats. Neuroreport. 1994;5:2565–2568.
    1. Tortorici V., Nogueira L., Salas R., Vanegas H. Involvement of local cholecystokinin in the tolerance induced by morphine microinjections into the periaqueductal gray of rats. Pain. 2003;102:9–16.
    1. Tortorici V., Nogueira L., Aponte Y., Vanegas H. Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizole) microinjections into the periaqueductal gray matter of rats. Pain. 2004;112:113–120.
    1. Tortorici V., Morgan M.M., Vanegas H. Tolerance to repeated microinjection of morphine into the periaqueductal gray is associated with changes in the behavior of off- and on-cells in the rostral ventromedial medulla. Pain. 2001;89:237–244.
    1. Tortorici V., Aponte Y., Acevedo H., Nogueira L., Vanegas H. Tolerance to non-opioid analgesics in PAG involves unresponsiveness of medullary pain-modulating neurons in male rats. Eur. J. Neurosci. 2009;29:1188–1196.
    1. Fowler C.J., Holt S.C., Nilsson O., Jonsson K.O., Tiger G., Jacobsson S.O.P. The endocannabinoid signaling system: Pharmacological and therapeutic aspects. Pharmacol. Biochem. Behav. 2005;81:248–262.
    1. Piomelli D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003;4:873–884.
    1. Ryberg E., Larsson N., Sjögren S., Hjort S., Hermansson N.-O., Leonova J., Elebring T., Nilsson K., Drmota T., Greasley P.J. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 2007;152:1092–1101.
    1. Staton P.C., Hatcher J.P., Walker D.J., Morrison A.D., Shapland E.M., Hughes J.P., Chong E., Mander P.K., Green P.J., Billinton A., Fulleylove M., Lancaster H.C., Smith J.C., Bailey L.T., Wise A., Brown A.J., Richardson J.C., Chessell I.P. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain. 2008;139:225–236.
    1. Lichtman A.H., Martin B.R. Spinal and supraspinal components of cannabinoid-induced antinociception. J. Pharmacol. Exp. Ther. 1991;258:517–523.
    1. Lichtman A.H., Cook S.A., Martin B.R. Investigation of brain sites mediating cannabinoid-induced antinociception in rats: Evidence supporting periaqueductal gray involvement. J. Pharmacol. Exp. Ther. 1996;276:585–593.
    1. Martin W.J., Tsou K., Walker J.M. Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex after microinjection into the rostral ventromedial medulla. Neurosci. Lett. 1998;242:33–36.
    1. Suplita R.L., Farthing J.N., Gutierrez T., Hohmann A.G. Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla. Neuropharmacology. 2005;49:1201–1209.
    1. Meng I.A., Manning B.H., Martin W.J., Fields H.L. An analgesia circuit activated by cannabinoids. Nature. 1998;395:381–383.
    1. Ottani A., Leone S., Sandrini M., Ferrari A., Bertolini A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur. J. Pharmacol. 2006;531:280–281.
    1. Naidu P.S., Booker L., Cravatt B.F., Lichtman A.H. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J. Pharmacol. Exp. Ther. 2009;329:48–56.
    1. Mallet C., Daulhac L., Bonnefont J., Ledent C., Etienne M., Chapuy E., Libert F., Eschalier A. Endocannabinoid and serotonergic systems are needed for acetaminophen-induced analgesia. Pain. 2008;139:190–200.
    1. Guindon J., De Lean A., Beaulieu P. Local interaction between anandamide, an endocannabinoid, and ibuprofen, a nonsteroidal anti-inflammatory drug, in acute inflammatory pain. Pain. 2006;121:85–93. doi: 10.1016/j.pain.2005.12.007.
    1. Guindon J., LoVerme J., De Lean A., Piomelli D., Beaulieu P. Synergistic antinociceptive effects of anandamide, an endocannabinoid, and nonsteroidal anti-inflammatory drugs in peripheral tissue: A role for endogenous fatty-acid ethanolamides? Eu. J. Pharmacol. 2006;550:68–77. doi: 10.1016/j.ejphar.2006.08.045.
    1. Gühring H., Hamza M., Sergejeva M., Ates M., Kotalla C.E., Ledent K., Brune K. A role for endocannabinoids in indomethacin-induced spinal antinociception. Eur. J. Pharmacol. 2002;454:153–163.
    1. Telleria-Diaz A., Schmidt M., Kreusch S., Neubert A.K., Schache F., Vazquez E., Vanegas H., Schaible H.G., Ebersberger A. Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: Involvement of prostaglandins and endocannabinoids. Pain. 2009;148:26–35.
    1. Vazquez-Rodriguez E., Escobar W., Ramirez K., Avila C., Vanegas H. 12th World Congress on Pain. IASP Press; Seattle, WA, USA: 2008. The antihyperalgesic effect of PAG-microinjected metamizol is mediated by endocannabinoids in the PAG-RVM axis.
    1. Vanegas H., Schaible H.-G. Prostaglandins and cyclooxygenases in the spinal cord. Prog. Neurobiol. 2001;64:327–363.
    1. Hamza M., Dionne R.A. Mechanisms of non-opioid analgesics beyond cyclooxygenase enzyme inhibition. Curr. Mol. Pharmacol. 2009;9:1–14.
    1. Vaughan C.W., Ingram S.L., Connor M.A., Christie M.J. How opioids inhibit GABA-mediated neurotransmission. Nature. 1997;390:611–614.
    1. Vaughan C.W., Christie M.J. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J. Physiol. 1997;498:463–472.
    1. Vaughan C.W. Enhancement of opioid inhibition of GABAergic synaptic transmission by cyclo-oxygenase inhibitors in rat periaqueductal grey neurones. Br. J. Pharmacol. 1998;123:1479–1481.
    1. Moreau J.-L., Fields H.L. Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res. 1986;397:37–46.
    1. Heinricher M.M., Tortorici V. Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience. 1994;63:533–546.
    1. Kim J., Alger B.E. Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nat. Neurosci. 2004;7:697–698.
    1. Kozak K.R., Rowlinson S.W., Marnett L.J. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J. Biol. Chem. 2000;275:33744–33749.
    1. Kozak K.R., Crews B.C., Morrow J.D., Wang L.-H., Ma Y.H., Weinander R., Jakobsson P.-J., Marnett L.J. Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J. Biol. Chem. 2002;277:44877–44885.
    1. Vaughan C.W., McGregor I.S., Christie M.J. Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. Br. J. Pharmacol. 1999;127:935–940. doi: 10.1038/sj.bjp.0702636.
    1. Vaughan C.W., Connor M., Bagley E.E., Christie M.J. Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol. Pharmacol. 2000;57:288–295.

Source: PubMed

3
Subscribe