Prominent changes in blood coagulation of patients with SARS-CoV-2 infection

Huan Han, Lan Yang, Rui Liu, Fang Liu, Kai-Lang Wu, Jie Li, Xing-Hui Liu, Cheng-Liang Zhu, Huan Han, Lan Yang, Rui Liu, Fang Liu, Kai-Lang Wu, Jie Li, Xing-Hui Liu, Cheng-Liang Zhu

Abstract

Background As the number of patients increases, there is a growing understanding of the form of pneumonia sustained by the 2019 novel coronavirus (SARS-CoV-2), which has caused an outbreak in China. Up to now, clinical features and treatment of patients infected with SARS-CoV-2 have been reported in detail. However, the relationship between SARS-CoV-2 and coagulation has been scarcely addressed. Our aim is to investigate the blood coagulation function of patients with SARS-CoV-2 infection. Methods In our study, 94 patients with confirmed SARS-CoV-2 infection were admitted in Renmin Hospital of Wuhan University. We prospectively collect blood coagulation data in these patients and in 40 healthy controls during the same period. Results Antithrombin values in patients were lower than that in the control group (p < 0.001). The values of D-dimer, fibrin/fibrinogen degradation products (FDP), and fibrinogen (FIB) in all SARS-CoV-2 cases were substantially higher than those in healthy controls. Moreover, D-dimer and FDP values in patients with severe SARS-CoV-2 infection were higher than those in patients with milder forms. Compared with healthy controls, prothrombin time activity (PT-act) was lower in SARS-CoV-2 patients. Thrombin time in critical SARS-CoV-2 patients was also shorter than that in controls. Conclusions The coagulation function in patients with SARS-CoV-2 is significantly deranged compared with healthy people, but monitoring D-dimer and FDP values may be helpful for the early identification of severe cases.

Keywords: SARS-CoV-2; blood coagulation; coronavirus disease 2019.

References

    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020. DOI: 10.1056/NEJMoa2001017.
    1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17:181–92.
    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020. DOI: 10.1056/NEJMoa2001316.
    1. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020. DOI: 10.1016/s0140-6736(20)30360-3.
    1. Ksiazek TG, Dean Erdman DV, Goldsmith CS, Zaki SR, Peret T, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348:1953–66.
    1. Drosten C, Günther S, Preiser W, van der Werf S, Brodt H-R, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003;348:1967–76.
    1. Zhong NS, Zheng BJ, Li YM, Poon LL, Xie ZH, Chan KH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003;362:1353–8.
    1. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 2003;362:263–70.
    1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814–20.
    1. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 2013;87:7790–2.
    1. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China — key questions for impact assessment. N Engl J Med 2020. DOI: 10.1056/NEJMp2000929.
    1. Mattiuzzi CG. Which lessons shall we learn from the 2019 novel coronavirus outbreak? Ann Transl Med 2020;8:48.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
    1. WHO. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Interim guidance. WHO/COVID-19/laboratory/2020.4, .
    1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020;25.
    1. The Lancet. Emerging understandings of 2019-nCoV. Lancet 2020;395:311.
    1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020. DOI: 10.1038/s41586-020-2008-3.
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020. DOI: 10.1111/jth.14768.
    1. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med 2020;58:1131–4.
    1. Minasyan H, Flachsbart F. Blood coagulation: a powerful bactericidal mechanism of human innate immunity. Int Rev Immunol 2019;38:3–17.
    1. Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately? Blood 2009;114:2367–74.
    1. Gershom ES, Sutherland MR, Lollar P, Pryzdial EL. Involvement of the contact phase and intrinsic pathway in herpes simplex virus-initiated plasma coagulation. J Thromb Haemost 2010;8:1037–43.
    1. Rapala-Kozik M, Karkowska J, Jacher A, Golda A, Barbasz A, Guevara-Lora I, et al. Kininogen adsorption to the cell surface of Candida spp. Int Immunopharmacol 2008;8:237–41.
    1. Loof TG, Morgelin M, Johansson L, Oehmcke S, Olin AI, Dickneite G, et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 2011;118:2589–98.
    1. Kawano N, Wada H, Uchiyama T, Kawasugi K, Madoiwa S, Takezako N, et al. Analysis of the association between resolution of disseminated intravascular coagulation (DIC) and treatment outcomes in post-marketing surveillance of thrombomodulin alpha for DIC with infectious disease and with hematological malignancy by organ failure. Thromb J 2020;18:2.
    1. Levi M, Tencate H. Disseminated intravascular coagulation. N Engl J Med 1999;341:586–92.

Source: PubMed

3
Subscribe