Low dose chloroquine decreases insulin resistance in human metabolic syndrome but does not reduce carotid intima-media thickness

Janet B McGill, Mariko Johnson, Stacy Hurst, William T Cade, Kevin E Yarasheski, Richard E Ostlund, Kenneth B Schechtman, Babak Razani, Michael B Kastan, Donald A McClain, Lisa de Las Fuentes, Victor G Davila-Roman, Daniel S Ory, Samuel A Wickline, Clay F Semenkovich, Janet B McGill, Mariko Johnson, Stacy Hurst, William T Cade, Kevin E Yarasheski, Richard E Ostlund, Kenneth B Schechtman, Babak Razani, Michael B Kastan, Donald A McClain, Lisa de Las Fuentes, Victor G Davila-Roman, Daniel S Ory, Samuel A Wickline, Clay F Semenkovich

Abstract

Background: Metabolic syndrome, an obesity-related condition associated with insulin resistance and low-grade inflammation, leads to diabetes, cardiovascular diseases, cancer, osteoarthritis, and other disorders. Optimal therapy is unknown. The antimalarial drug chloroquine activates the kinase ataxia telangiectasia mutated (ATM), improves metabolic syndrome and reduces atherosclerosis in mice. To translate this observation to humans, we conducted two clinical trials of chloroquine in people with the metabolic syndrome.

Methods: Eligibility included adults with at least 3 criteria of metabolic syndrome but who did not have diabetes. Subjects were studied in the setting of a single academic health center. The specific hypothesis: chloroquine improves insulin sensitivity and decreases atherosclerosis. In Trial 1, the intervention was chloroquine dose escalations in 3-week intervals followed by hyperinsulinemic euglycemic clamps. Trial 2 was a parallel design randomized clinical trial, and the intervention was chloroquine, 80 mg/day, or placebo for 1 year. The primary outcomes were clamp determined-insulin sensitivity for Trial 1, and carotid intima-media thickness (CIMT) for Trial 2. For Trial 2, subjects were allocated based on a randomization sequence using a protocol in blocks of 8. Participants, care givers, and those assessing outcomes were blinded to group assignment.

Results: For Trial 1, 25 patients were studied. Chloroquine increased hepatic insulin sensitivity without affecting glucose disposal, and improved serum lipids. For Trial 2, 116 patients were randomized, 59 to chloroquine (56 analyzed) and 57 to placebo (51 analyzed). Chloroquine had no effect on CIMT or carotid contrast enhancement by MRI, a pre-specified secondary outcome. The pre-specified secondary outcomes of blood pressure, lipids, and activation of JNK (a stress kinase implicated in diabetes and atherosclerosis) were decreased by chloroquine. Adverse events were similar between groups.

Conclusions: These findings suggest that low dose chloroquine, which improves the metabolic syndrome through ATM-dependent mechanisms in mice, modestly improves components of the metabolic syndrome in humans but is unlikely to be clinically useful in this setting.Trial registration ClinicalTrials.gov (NCT00455325, NCT00455403), both posted 03 April 2007.

Keywords: Atheroma; Blood pressure; Carotid intima-media thickness; Chloroquine; Glucose disposal; Insulin sensitivity; JNK; Lipids; Metabolic syndrome.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT statement flow diagram for subjects in dose escalation study
Fig. 2
Fig. 2
Chloroquine dose escalation trial design and results for hyperinsulinemic-euglycemic clamping and lipids. a Diagram of the dose escalation protocol. A 5–7 week washout period was required between limbs to allow for hematologic recovery following the blood drawing associated with clamps. b Glucose disposal rates expressed as μmol glucose/kg body weight/min. Insulin infusion rates were 0, 56, 181, or 486 pmol/m2/min. c Hepatic glucose production expressed as (μmol glucose/kg body weight/min) per pmol/L insulin. d Hepatic insulin sensitivity expressed as percent suppression of glucose production at 56 pmol/m2/min. e Total, non-HDL, and LDL cholesterol at the end of each limb. f Triglycerides and HDL cholesterol at the end of each limb. Data represent mean ± SE. *P < 0.05 by Tukey’s test for multiple comparisons after repeated measures ANOVA
Fig. 3
Fig. 3
CONSORT statement flow diagram for subjects in the yearlong randomized clinical trial
Fig. 4
Fig. 4
Yearlong chloroquine trial design and results for carotid imaging. a Diagram of the vascular endpoint trial. After 12 months of placebo or chloroquine, both were stopped, then subjects returned at 24 months for limited additional studies. b CIMT results. Standard deviations (not included to simplify data presentation) and n values for these data follow. Chloroquine: 0, 0.76625 ± 0.17270 (n = 56); 6 months, 0.75827 ± 0.17634 (n = 56); 12 months, 0.75769 ± 0.16061 (n = 54); 24 months, 0.77450 ± 0.16540 (n = 53). Placebo: 0, 0.76900 ± 0.11653 (n = 53); 6 months, 0.76500 ± 0.13087 (n = 51); 12 months, 0.76833 ± 0.11487 (n = 50); 24 months, 0.77280 ± 0.13290 (n = 49). c MRI-determined contrast enhancement. P = 0.0697. d Representative images at baseline and at 12 months for the same vessels. e MRI-determined common carotid lumen area *P = 0.0033. f MRI-determined common carotid artery diameter. *P = 0.0019. Data represent mean ± SD in c, e, f. Analysis by mixed model testing in b, paired t tests in c, e, f
Fig. 5
Fig. 5
Blood pressure and lipid responses in the yearlong chloroquine trial. a Diastolic blood pressure over 24 months determined by conventional testing. bd Blood pressures over 12 months, determined by an ambulatory monitoring device. ei Lipids and lipoproteins over 24 months. P values were determined by mixed model treatment of repeated measures
Fig. 6
Fig. 6
Effects of placebo and chloroquine on potential mechanistic mediators. a Activated JNK in circulating monocytes at baseline and 12 months. *P = 0.0164; P = 0.3343 for placebo; paired t tests. b Plasma concentrations of the oxysterol cholestane-3β, 5α, 6β-triol at 12 months. *P = 0.0031; unpaired t test

References

    1. Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375(9710):181–183. doi: 10.1016/S0140-6736(09)61794-3.
    1. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. JACC. 2010;56(14):1113–1132. doi: 10.1016/j.jacc.2010.05.034.
    1. Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab. 2017;6(2):174–184. doi: 10.1016/j.molmet.2016.12.001.
    1. Look ARG, Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA, et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4(11):913–921. doi: 10.1016/S2213-8587(16)30162-0.
    1. Semenkovich CF. Insulin resistance and atherosclerosis. J Clin Invest. 2006;116(7):1813–1822. doi: 10.1172/JCI29024.
    1. Schneider JG, Finck BN, Ren J, Standley KN, Takagi M, Maclean KH, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 2006;4(5):377–389. doi: 10.1016/j.cmet.2006.10.002.
    1. Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010;107(8):1021–1031. doi: 10.1161/CIRCRESAHA.110.218966.
    1. Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab. 2012;16(1):68–80. doi: 10.1016/j.cmet.2012.06.003.
    1. Razani B, Feng C, Semenkovich CF. p53 is required for chloroquine-induced atheroprotection but not insulin sensitization. J Lipid Res. 2010;51(7):1738–1746. doi: 10.1194/jlr.M003681.
    1. Geisel MH, Bauer M, Hennig F, Hoffmann B, Lehmann N, Mohlenkamp S, et al. Comparison of coronary artery calcification, carotid intima-media thickness and ankle-brachial index for predicting 10-year incident cardiovascular events in the general population. Eur Heart J. 2017;38(23):1815–1822. doi: 10.1093/eurheartj/ehx120.
    1. Subramanian S, DeRosa MA, Bernal-Mizrachi C, Laffely N, Cade WT, Yarasheski KE, et al. PPARalpha activation elevates blood pressure and does not correct glucocorticoid-induced insulin resistance in humans. Am J Physiol Endocrinol Metab. 2006;291(6):E1365–E1371. doi: 10.1152/ajpendo.00230.2006.
    1. Derosa G, Fogari E, D’Angelo A, Bianchi L, Bonaventura A, Romano D, et al. Adipocytokine levels in obese and non-obese subjects: an observational study. Inflammation. 2013;36(4):914–920. doi: 10.1007/s10753-013-9620-4.
    1. Derosa G, Bonaventura A, Bianchi L, Romano D, Fogari E, et al. Effects of Berberis aristata/Silybum marianum association on metabolic parameters and adipocytokines in overweight dyslipidemic patients. J Biol Regul Homeost Agents. 2013;27(3):717–728.
    1. Azimi-Nezhad M, Mirhafez SR, Stathopoulou MG, Murray H, Ndiaye NC, Bahrami A, et al. The relationship between vascular endothelial growth factor cis- and trans-acting genetic variants and metabolic syndrome. Am J Med Sci. 2018;355(6):559–565. doi: 10.1016/j.amjms.2018.03.009.
    1. Suarez-Ortegon MF, Blanco E, McLachlan S, Fernandez-Real JM, Burrows R, Wild SH, et al. Ferritin levels throughout childhood and metabolic syndrome in adolescent stage. Nutr Metab Cardiovasc Dis. 2019;29(3):268–278. doi: 10.1016/j.numecd.2018.11.008.
    1. Demir E, Harmankaya NO, Kirac Utku I, Aciksari G, Uygun T, Ozkan H, et al. The relationship between epicardial adipose tissue thickness and serum interleukin-17a level in patients with isolated metabolic syndrome. Biomolecules. 2019;9(3):97. doi: 10.3390/biom9030097.
    1. Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D, et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest. 2012;122(10):3529–3540. doi: 10.1172/JCI44421.
    1. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. J Am Soc Echocardiography. 2008;21(2):93–111. doi: 10.1016/j.echo.2007.11.011.
    1. de Fuentes L, Waggoner AD, Mohammed BS, Stein RI, Miller BV, 3rd, Foster GD, et al. Effect of moderate diet-induced weight loss and weight regain on cardiovascular structure and function. JACC. 2009;54(25):2376–2381. doi: 10.1016/j.jacc.2009.07.054.
    1. Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE, et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010;2(56):5681. doi: 10.1126/scitranslmed.3001417.
    1. Yaghootkar H, Lamina C, Scott RA, Dastani Z, Hivert MF, Warren LL, et al. Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes. Diabetes. 2013;62(10):3589–3598. doi: 10.2337/db13-0128.
    1. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17(3):329–341. doi: 10.1016/j.cmet.2013.02.007.
    1. Ramm GA, Powell LW, Halliday JW. Pathways of intracellular trafficking and release of ferritin by the liver in vivo: the effect of chloroquine and cytochalasin D. Hepatology. 1994;19(2):504–513. doi: 10.1002/hep.1840190232.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–1470. doi: 10.2337/diacare.22.9.1462.
    1. Han MS, Jung DY, Morel C, Lakhani SA, Kim JK, Flavell RA, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science. 2013;339(6116):218–222. doi: 10.1126/science.1227568.
    1. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944–948. doi: 10.1038/nature04634.
    1. Minamikawa J, Tanaka S, Yamauchi M, Inoue D, Koshiyama H. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab. 1998;83(5):1818–1820. doi: 10.1210/jcem.83.5.4932.
    1. Koshiyama H, Shimono D, Kuwamura N, Minamikawa J, Nakamura Y. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab. 2001;86(7):3452–3456. doi: 10.1210/jcem.86.7.7810.
    1. Stocker DJ, Taylor AJ, Langley RW, Jezior MR, Vigersky RA. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J. 2007;153(3):445. doi: 10.1016/j.ahj.2006.11.005.
    1. Xiang AH, Hodis HN, Kawakubo M, Peters RK, Kjos SL, Marroquin A, et al. Effect of pioglitazone on progression of subclinical atherosclerosis in non-diabetic premenopausal Hispanic women with prior gestational diabetes. Atherosclerosis. 2008;199(1):207–214. doi: 10.1016/j.atherosclerosis.2007.10.016.
    1. Saremi A, Schwenke DC, Buchanan TA, Hodis HN, Mack WJ, Banerji M, et al. Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. ATVB. 2013;33(2):393–399. doi: 10.1161/ATVBAHA.112.300346.
    1. Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med. 2004;10(10):1128–1132. doi: 10.1038/nm1111.
    1. Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, et al. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science. 2004;306(5701):1558–1561. doi: 10.1126/science.1101909.
    1. Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012;119(6):1490–1500. doi: 10.1182/blood-2011-08-373639.
    1. Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nature Med. 2018;24(9):1384–1394. doi: 10.1038/s41591-018-0125-4.
    1. GoDarts. Group UDPS. Wellcome Trust Case Control C. Zhou K, Bellenguez C, Spencer CC, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genetics. 2011;43(2):117–120. doi: 10.1038/ng.735.
    1. Gerstein HC, Thorpe KE, Taylor DW, Haynes RB. The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas–a randomized trial. Diabetes Res Clin Prac. 2002;55(3):209–219. doi: 10.1016/S0168-8227(01)00325-4.
    1. Sheikhbahaie F, Amini M, Gharipour M, Aminoroaya A, Taheri N. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition. Adv Biomed Res. 2016;5:145. doi: 10.4103/2277-9175.187401.
    1. Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF, et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA. 2007;298(2):187–193. doi: 10.1001/jama.298.2.187.
    1. Solomon DH, Massarotti E, Garg R, Liu J, Canning C, Schneeweiss S. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA. 2011;305(24):2525–2531. doi: 10.1001/jama.2011.878.
    1. Mercer E, Rekedal L, Garg R, Lu B, Massarotti EM, Solomon DH. Hydroxychloroquine improves insulin sensitivity in obese non-diabetic individuals. Arthritis Res Ther. 2012;14(3):R135. doi: 10.1186/ar3868.

Source: PubMed

3
Subscribe