Contrast-induced nephropathy: pharmacology, pathophysiology and prevention

Remy W F Geenen, Hylke Jan Kingma, Aart J van der Molen, Remy W F Geenen, Hylke Jan Kingma, Aart J van der Molen

Abstract

Modern iodinated contrast media (CM) consist of one or two tri-iodobenzene rings. They differ from each other in the composition of the side chains, creating different molecules and thus different brand substances. After intravascular administration, all CM are distributed rapidly into intravascular and extracellular fluids. They are eliminated solely by glomerular filtration. In patients with normal renal function, CMs are eliminated within 24 h. The pathophysiology of contrast-induced nephropathy (CIN) is based on three distinct but interacting mechanisms: medullary ischaemia, formation of reactive oxygen species and direct tubular cell toxicity. The contribution of each of these mechanisms to the development of CIN in the individual patient remains unclear. CIN prevention is extensively described in guidelines, such as the recently updated guideline from the Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR). The recent update is briefly discussed. Furthermore, it remains unclear if volume expansion with either NaCl 0.9 % or NaHCO3 1.4 % is superior. Teaching points • After intravascular injection, CM are distributed over intravascular and extracellular fluids. • CM are eliminated by glomerular filtration in patients with normal kidney function. • CIN pathophysiology is based on medullary ischaemia, formation of reactive oxygen species (ROS) and tubular cell toxicity. • It remains unclear if volume expansion with either NaCl 0.9 % or NaHCO 3 1.4 % is superior.

Figures

Fig. 1
Fig. 1
The structural formula of sodium acetrizoate (Urokon); the first high-osmolar and ionic contrast agent
Fig. 2
Fig. 2
The structural formula of metrizamide (Amipaque); the first non-ionic contrast medium developed by Almen et al.
Fig. 3
Fig. 3
The structural formula of iohexol (Omnipaque); an example of a highly soluble polycarboxylated contrast medium
Fig. 4
Fig. 4
The structural formula of iodixanol (Visipaque); a non-ionic dimer consisting of two aromatic rings, each containing three iodine atoms

References

    1. Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, et al. A European renal best practice (ERBP) position statement on the kidney disease improving global outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 1: definitions, conservative managment and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27:4263–4272. doi: 10.1093/ndt/gfs375.
    1. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–766. doi: 10.1016/S0140-6736(11)61454-2.
    1. Stacul F, Van der Molen A, Reimer P, Webb JAW, Thomsen HS, Morcos SK, et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur Radiol. 2011;21:2527–2541. doi: 10.1007/s00330-011-2225-0.
    1. Thomsen HS, Morcos SK, Barrett BJ. Contrast-induced nephropathy: The wheel has turned 360 degrees. Acta Radiol. 2008;49:646–657. doi: 10.1080/02841850801995413.
    1. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–936. doi: 10.1053/ajkd.2002.32766.
    1. Karlsberg RP, Dohad SY, Sheng R. Contrast-induced acute kidney injury (CI-AKI) following intra-arterial administration of iodinated contrast media. J Nephrol. 2010;23:658–666.
    1. Kooiman J, Pasha SM, Zondag W, Sijpkens YWJ, Van der Molen AJ, Huisman MV, et al. Meta-analysis: Serum creatinine changes following contrast enhanced CT imaging. Eur J Radiol. 2012;81:2554–2561. doi: 10.1016/j.ejrad.2011.11.020.
    1. Balemans CEA, Reichert LJM, Schelven BIH, Van den Brand JAJG, Wetzels JFM. Epidemiology of contrast material-induced nephropathy in the era of hydration. Radiology. 2012;263:706–713. doi: 10.1148/radiol.12111667.
    1. Kooiman J, Le Haen PA, Gezgin G, De Vries JPP, Boersma D, Brulez HF, et al. Contrast-induced acute kidney injury and clinical outcomes after intra-arterial and intravenous contrast administration: risk comparison adjusted for patient characteristics by design. Am Heart J. 2013;165:793–799. doi: 10.1016/j.ahj.2013.02.013.
    1. Rao QA, Newhouse JH. Risk of nephropathy after intravenous administration of contrast material: A critical literature analysis. Radiology. 2006;239:392–397. doi: 10.1148/radiol.2392050413.
    1. Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: Implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191:376–382. doi: 10.2214/AJR.07.3280.
    1. McDonald JS, McDonald RJ, Comin J, Wiliamson E, Katzberg RW, Hassan Murad M, et al. Frequency of acute kidney injury following intravenous contrast medium administration: A systematic review and meta-analysis. Radiology. 2013;276:119–128. doi: 10.1148/radiol.12121460.
    1. McDonald RJ, McDonald JS, Bida JP, Carter RE, Fleming CJ, Misra S, et al. Intravenous contrast material-induced nephropathy: causal of coincident phenomenon? Radiology. 2013;276:106–118. doi: 10.1148/radiol.12121823.
    1. Davenport MS, Khalatbari Sm Cohan RH, Dillman JR, Myles JD, Ellis JH (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality contrast material: Risk stratification by using estimated glomerular filtration rate. Radiology 268:719-728
    1. Wallingford VH. The development of organic iodine compounds a x-ray contrast media. J Am Pharm Assoc (Baltim) 1953;42:721–728. doi: 10.1002/jps.3030421206.
    1. Speck U. Contrast media: overview, use and pharmaceutical aspects, 4th edn. Berlin Heidelberg New York: Springer; 1999. pp. 8–83.
    1. Pollack HM. History of iodinated contrast media. In: Thomson HS, Muller RN, Mattrey RF, editors. Trends in contrast media. Berlin Heidelberg New York: Springer; 1998. pp. 3–19.
    1. Fischer HM. Historical aspects of contrast media. In: Felix R, editor. Contrast media from the past tot the future. Symposium Berlin 1987. Stuttgart New York: Georg Thieme; 1987. pp. 3–18.
    1. Almen T. Contrast agent design. Some aspects on the synthesis of water soluble contrast agents of low osmolality. Theor Biol. 1969;24:216–226. doi: 10.1016/S0022-5193(69)80047-0.
    1. Gonsette RE. Animal experiments and clinical experiences in cerebral angiography with a new contrast agent (ioxaglic acid) with a low hyperosmolality. Ann Radiol (Paris) 1978;21:271–273.
    1. Sovak M, Ranganathan R, Speck U. Nonionic dimer: development and initial testing of an intrathecal contrast agent. Radiology. 1982;142:115–118. doi: 10.1148/radiology.142.1.6895557.
    1. Scholz P, Weinmann HJ, Mützel W, Staks T. Pharmacokinetics of iotrolan after intravenous injection into healthy volunteers. Fortschr Geb Rontgenstrahlen Nuklearmed Erganzungsbd. 1989;128:211–214.
    1. Bolstad B, Borch KW, Grynne BH, Lundby B, Nossen JO, Kloster YF, et al. Safety and tolerability of iodixanol. A dimeric, nonionic contrast medium: an emphasis on European clinical phases I and II. Invest Radiol. 1991;26(Suppl 1):S201–204. doi: 10.1097/00004424-199111001-00069.
    1. Lenhard DC, Frisk AL, Lengsfeld P, Pietsch H, Jost G. The effect of iodinated contrast agent properties on renal kinetics and oxygenation. Invest Radiol. 2013;48:175–182.
    1. SmPC texts of the ICMs via the College ter Beoordeling van Geneesmiddelen (Medicines Evaluation Board) in The Netherlands Last accessed 24/08/2013: Amidotrizoic acid (Urografin); Iobitridol (Xenetix); Iodixanol (Visipaque); Iohexol (Omnipaque); Iomeprol (Iomeron); Iopromide (Ultravist); Ioversol (Optiray); Ioxaglate (Hexabrix); Ioxitalaminic acid (Telebrix).
    1. European Society of Urogenital Radiology contrast media Safety Committee guidelines. Accesible at: Last accessed 24/08/2013
    1. Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med. 1995;332:647–655. doi: 10.1056/NEJM199503093321006.
    1. Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1153–R1175. doi: 10.1152/ajpregu.00657.2002.
    1. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3:288–296. doi: 10.2215/CJN.02600607.
    1. Katzberg RW. Contrast medium-induced nephrotoxicity; Which pathway? Radiology. 2005;235:752–755. doi: 10.1148/radiol.2353041865.
    1. Heyman SN, Reichman J, Brezis M. Pathophysioloy of radiocontrast nephropathy. Invest Radiol. 1999;34:685–691. doi: 10.1097/00004424-199911000-00004.
    1. Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney International. 2005;68:14–22. doi: 10.1111/j.1523-1755.2005.00377.x.
    1. Heyman SN, Rosenberger C, Rosen S. Regional alterations in renal hemodynamcs and oxygenation: a role in contrast medium-induced nephropathy. Nephrol Dial Transplant. 2005;20(Suppl 1):i6–i11. doi: 10.1093/ndt/gfh1069.
    1. Sendeski M, Patzak A, Pallone T, Cao C, Persson AE, Persson PB. Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy. Radiology. 2009;251:697–704. doi: 10.1148/radiol.2513081732.
    1. Liu ZZ, Viegas VU, Perlewitx A, Lai EY, Persson PB, Patzak A, et al. Iodinated contrast media differentially affect afferent and efferent arteriolar tone and reactivity in mice: A possible explanation for reduced glomerular filtration rate. Radiology. 2012;265:762–771. doi: 10.1148/radiol.12120044.
    1. Heyman SN, Rosen S, Khamaisi M, Idee JM, Rosenberger C. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol. 2010;45:188–195. doi: 10.1097/RLI.0b013e3181d2eed8.
    1. Haller C, Hizoh I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol. 2004;39:149–154. doi: 10.1097/01.rli.0000113776.87762.49.
    1. ACR manual on contrast media. Version 9 Accessible at: Last accessed 24/08/2013
    1. Fishbane S. N-Acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol. 2008;3:281–287. doi: 10.2215/CJN.02590607.
    1. Ellis JH, Cohan RH. Prevention of contrast-induced nephropathy: An overview. Radiol Clin N Am. 2009;47:801–811. doi: 10.1016/j.rcl.2009.06.003.
    1. Merten GJ, Burgess PW, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate. A randomized controlled trial. JAMA. 2004;291:2328–2334. doi: 10.1001/jama.291.19.2328.
    1. Recio-Mayoral A, Chaparro M, Prado B, Cozar R, Mendez I, Banerjee D, et al. The reno-protective effect of hydration with sodium bicarbonate plus N-acetylcysteine in patients undergoing emergency percutaneous coronary intervention: The RENO study. J Am Coll Cardiol. 2007;49:1283–1288. doi: 10.1016/j.jacc.2006.11.034.
    1. Pakfetrat M, Nikoo MH, Malekmakan L, Tabnadeh M, Roozbeh J, Nasab MH, et al. A comparison of sodium bicarbonate infusion versus normal saline infusion and its combination with oral acetezolamide for prevention of contrast-induced nephropathy: A randomized, double-blind trial. Int Urol Nephrol. 2009;41:629–634. doi: 10.1007/s11255-008-9520-y.
    1. Vasheghani-Farahani A, Sadigh G, Kassaian SE, Khatami SM, Fotouhi A, Razavi SA, et al. Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: A randomized controlled trial. Am J Kidney Dis. 2009;54:610–618. doi: 10.1053/j.ajkd.2009.05.016.
    1. Briguori C, Airdoldi F, D’Andrea D, Bonizzoni E, Morici N, Focaciio A, et al. Renal insufficiency following contrast media administration trial (REMEDIAL). A randomized comparison of 3 preventive strategies. Circulation. 2007;115:1211–1217.
    1. Masuda M, Yamada T, Mine T, Morita T, Tamaki S, Tsukamoto Y, et al. Comparison of usefulness of sodium bicarbonate versus sodium chloride to prevent contrast-induced nephropathy in patients undergoing an emergent coronary procedure. Am J Cardiol. 2007;100:781–786. doi: 10.1016/j.amjcard.2007.03.098.
    1. Maioli M, Toso A, Leoncini M, Gallopin M, Tedeschi D, Micheletti C, et al. Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. J Am Coll Cardiol. 2008;52:599–604. doi: 10.1016/j.jacc.2008.05.026.
    1. Adolph E, Holdt-Lehmann B, Chatterjee T, Paschka S, Prott A, Schneider H, et al. Renal insufficiency following radiocontrast exposure trial (REINFORCE): A randomized comparison of sodium bicarbonate versus sodium chloride hydration for the prevention of contrast-induced nephropathy. Coron Artery Dis. 2008;19:413–419.
    1. Ozcan EE, Guneri S, Akdeniz B, Akyildiz IZ, Senaslan O, Baris N, et al. Sodium bicarbonate, N-acetylcysteine, and saline for prevention of radiocontrast-induced nephropathy. A comparison of 3 regimes for protecting contrast-induced nephropathy in patients undergoing coronary procedures. A single-center prospective controlled trial. Am Heart J. 2007;154:539–544. doi: 10.1016/j.ahj.2007.05.012.
    1. Brar SJ, Shen AYJ, Jorgensen MB, Kotlewski A, Aharonian VJ, Desai N, et al. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography. A randomized trial. JAMA. 2008;300:1038–1046. doi: 10.1001/jama.300.9.1038.
    1. Kooiman J, Sijpkens YW, Brulez HC, De Vries JPP, Hamming JF, Van der Molen AJ et al (2013) Randomized study of short prehydration with sodium bicarbonate versus standard pre- and posthydration with sodium chloride to prevent contrast induced acute kidney injury: The Salina trial. Accessible at: Last accessed 31/05/2013

Source: PubMed

3
Subscribe