Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research

Mobin Ibne Mokbul, Mobin Ibne Mokbul

Abstract

Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT's applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research.

Figures

Figure 1
Figure 1
Schematic of a generic time domain OCT system (reprinted with permission from [4]).
Figure 2
Figure 2
In vivo imaging of mouse brain subcortical regions noninvasively through the thinned skull by deep focusing using 1.7 μm OCT. (a) A maximum intensity projection of a series of cross-sectional images shows subcortical structures, including the hippocampus proper. (b) Microvasculature in deep white matter regions is visualized using an OCT angiography method and a maximum intensity projection. Scale bars: 0.2 mm (reprinted with permission from [38]).
Figure 3
Figure 3
3D ODT images of CBFv in mouse somatosensory cortex due to acute cocaine exposure. (a) Dynamic changes of 3D CBF networks (FOV: 3 × 3 × 1.8 mm3) in mouse somatosensory cortex in response to acute cocaine (30 mg/kg, i.p.). (b) En face and cross-sectional projections to show the flow dynamics in different vessels (e.g., 1–6) after cocaine. (c) Time-lapse CBF change (ΔCBF%) to track the dynamics of different vascular compartments (e.g., arterioles and venules) in response to cocaine (reprinted from [47]).
Figure 4
Figure 4
Details of the Δp response in a stained squid nerve. (a) Action potential; (b) |Δp| response at ∼8 ms is given by averaging 90 trials (N = 90) and (c) 10 trials (N = 10). In (b) and (c), arrow indicates the turning point of the galvanometer, and pixel numbers are given on the x-axis and y-axis. Scale bars: horizontal, 10 μm; vertical, 100 μm. Signal traces in time (d, e) are given for selected pixels (lateral index, depth index), which are marked by the blue circles in (b), with averaging 90 and 10 trials. Action potential traces in blue are for guidance (reprinted with permission from [62]).
Figure 5
Figure 5
Details of the Δp response in an unstained squid nerve. (a) Action potential recording; (b) |Δp| image at ∼10.5 ms and (c) Δp traces of selected pixels from an unstained nerve with an averaging of 90 trials. Arrow in (b) indicates the turning point of the galvanometer mirror; scale bars: horizontal, 10 μm; vertical, 100 μm. Pixel coordinates in (c) are in the form of (lateral index, depth index), and the locations are marked by blue circles in (b). The blue trace is the action potential recording for the registering time (reprinted with permission from [62]).
Figure 6
Figure 6
High-resolution images of the internal retinal structure taken with optical coherence tomography (OCT). (a) Low-coherence infrared light is transmitted into the eye through use of an interferometer. (b) The infrared light is transmitted through the pupil and then penetrates through the nine transparent layers of the retina. (c) A fundus image from the optical coherence tomography (OCT) device showing the optic disc appropriately centered and surrounded by the target image circumference marker for analysis of the retinal nerve fiber layer (reprinted with permission from [64]).
Figure 7
Figure 7
Comparison between regions where AAA is relatively stronger or weaker. (a–c) DOMAG results for (a) basal, (b) during-MCAO, and (c) after-reperfusion conditions, respectively. Strong AAA area is marked with a yellow dashed box and weak AAA area with a blue dashed box. (d–f) OMAG comparison between strong and weak AAA ROIs for (d) basal, (e) during-MCAO, and (f) after-reperfusion conditions, respectively. (g–i) Red, green, and yellow dots correspond to MCA, ACA, and AAA T-junction sourced arterioles, respectively. Blue dots correspond to the diving arterioles that are at nondetectable level compared to basal condition. Cartoon representations of the lumen diameters of pial and penetrating arterioles for (g) basal, (h) during-MCAO, and (i) after-reperfusion conditions, respectively. Scale bar is 0.3 mm (reprinted with permission from [77]).
Figure 8
Figure 8
In vivo brain cancer imaging in a mouse with patient-derived high-grade brain cancer (GBM272). (a and b) Brain tissues were imaged in vivo in mice (n = 5) undergoing brain cancer resection. After imaging, the mice were sacrificed and their brains were processed for histology. Here, we show the representative results of a mouse brain at the cancer site before surgery (a) and at the resection cavity after surgery (b). (c) Corresponding histology for the resection cavity after surgery was also shown. (d and e) With the same mouse, control images were imaged at a seemingly healthy area on the contralateral, left side of the brain (d), with its corresponding histology (e). The red circle indicates cancer, gray circle indicates resection cavity, and square was the OCT FOV. 2D optical property maps were displayed using an attenuation threshold of 5.5 mm−1. C, cancer; W, noncancer white matter; M, noncancer meninges. Aliasing artifacts at the image boundaries, which were produced when dorsal structures from outside the OCT depth were folded back into the image, were cropped out of image. 3D volumetric reconstructions were overlaid with optical property maps on the top surface. Optical attenuation properties were averaged for each subvolume of 0.326 mm × 0.008 mm × 1.8 mm within the tissue block, with a step size of 0.033 mm in the x direction. Each histological image (c and e) represented a cross-sectional view of the tissue block: the image corresponds to a single perpendicular slice through the attenuation map, along the dotted lines in (b) and (d), respectively. Residual cancer cells were marked with black arrows and correspond to yellow/red regions on the attenuation maps (at the level of the dotted line). Scale bars, 0.2 mm (reprinted with permission from [22]).
Figure 9
Figure 9
Effect of ethanol on mouse fetal brain development at GD14.5. Left panel represents OCT images (a) and (b) in horizontal section, middle panel shows US images (c) and (d) in the coronal plane, and right panel illustrates H&E images (e) and (f) in sagittal section of fetal brains from both control and ethanol treated pregnant dams. Ethanol induced increase in ventricular dilation can be observed with all the imaging techniques used in the study and in all three planes of orientation. LV, lateral ventricles; US, ultrasound; OCT, optical coherence tomography; H&E, hematoxylin-eosin staining. Scale bar, 500 μm (reprinted with permission from [94]).
Figure 10
Figure 10
Colocalization of the neurons in layer II of EC for six different tissue samples: registered Nissl stain (a), OCT image (b), and the overlay of the segmented neurons (c): green for Nissl, red for OCT, and yellow for the overlap. Scale bar: 500 μm (reprinted with permission from [110]).
Figure 11
Figure 11
Major limitations of OCT technology.

References

    1. Linden D. E. J. The challenges and promise of neuroimaging in psychiatry. Neuron. 2012;73(1):8–22. doi: 10.1016/j.neuron.2011.12.014.
    1. Siesler H. W., Ozaki Y., Kawata S., Heise H. M. Near-Infrared Spectroscopy. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2001.
    1. Baran U., Wang R. K. Review of optical coherence tomography based angiography in neuroscience. Neurophotonics. 2016;3(1) doi: 10.1117/1.NPh.3.1.010902.010902
    1. Huang D., Swanson E. A., Lin C. P., et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181. doi: 10.1126/science.1957169.
    1. Böhringer H. J., Lankenau E., Stellmacher F., Reusche E., Hüttmann G., Giese A. Imaging of human brain tumor tissue by near-infrared laser coherence tomography. Acta Neurochirurgica. 2009;151(5):507–517. doi: 10.1007/s00701-009-0248-y.
    1. Puliafito C. A., Hee M. R., Lin C. P., Reichel E., Schuman J. S., Duker J. S., et al. Imaging of macular diseases with optical coherence tomography. J Biomed Opt. 2004;9:47–74. doi: 10.1117/1.1629679.
    1. Lee S.-Y., Hong M.-K. Stent evaluation with optical coherence tomography. Yonsei Medical Journal. 2013;54(5):1075–1083. doi: 10.3349/ymj.2013.54.5.1075.
    1. Jang I.-K., Bouma B. E., Kang D.-H., et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. Journal of the American College of Cardiology. 2002;39(4):604–609. doi: 10.1016/s0735-1097(01)01799-5.
    1. Bouma B. E., Tearney G. J., Compton C. C., Nishioka N. S. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointestinal Endoscopy. 2000;51(4):467–474. doi: 10.1016/s0016-5107(00)70449-4.
    1. Tearney G. J., Brezinski M. E., Southern J. F., Bouma B. E., Boppart S. A., Fujimoto J. G. Optical biopsy in human gastrointestinal tissue using optical coherence tomography. American Journal of Gastroenterology. 1997;92(10):1800–1804.
    1. Tearney G. J., Brezinski M. E., Southern J. F., Bouma B. E., Boppart S. A., Fujimoto J. G. Optical biopsy in human urologic tissue using optical coherence tomography. The Journal of Urology. 1997;157(5):1915–1919. doi: 10.1016/S0022-5347(01)64900-0.
    1. Zagaynova E. V., Streltsova O. S., Gladkova N. D., et al. In vivo optical coherence tomography feasibility for bladder disease. The Journal of Urology. 2002;167(3):1492–1496. doi: 10.1016/S0022-5347(05)65351-7.
    1. Schmitt J. M., Yadlowsky M. J., Bonner R. F. Subsurface imaging of living skin with optical coherence microscopy. Dermatology. 1995;191(2):93–98. doi: 10.1159/000246523.
    1. Welzel J., Reinhardt C., Lankenau E., Winter C., Wolff H. H. Changes in function and morphology of normal human skin: Evaluation using optical coherence tomography. British Journal of Dermatology. 2004;150(2):220–225. doi: 10.1111/j.1365-2133.2004.05810.x.
    1. Colston B. W., Everett M. J., Da Silva L. B., Otis L. L., Stroeve P., Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Applied Optics. 1998;37(16):3582–3585. doi: 10.1364/AO.37.003582.
    1. Boppart S. A. Optical coherence tomography: Technology and applications for neuroimaging. Psychophysiology. 2003;40(4):529–541. doi: 10.1111/1469-8986.00055.
    1. Greenberg B. M., Frohman E. Optical coherence tomography as a potential readout in clinical trials. Therapeutic Advances in Neurological Disorders. 2010;3(3):153–160. doi: 10.1177/1756285610368890.
    1. Liang C. P. Optical Coherence Tomography for neurosurgery and Cancer Research [phD thesis] College Park, Md, USA: University of Maryland; 2014.
    1. Yaqoob Z., Wu J., Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques. 2005;39(supplement 6):S6–S13. doi: 10.2144/000112090.
    1. Li B., Wang H., Fu B., Wang R., Sakadžić S., Boas D. A. Impact of temporal resolution on estimating capillary RBC-flux with optical coherence tomography. Journal of Biomedical Optics. 2017;22(1) doi: 10.1117/1.JBO.22.1.016014.016014
    1. Magnain C., Augustinack J. C., Reuter M., et al. Blockface histology with optical coherence tomography: a comparison with Nissl staining. NeuroImage. 2014;84:524–533. doi: 10.1016/j.neuroimage.2013.08.072.
    1. Kut C., Chaichana K. L., Xi J., et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Science Translational Medicine. 2015;7(292) doi: 10.1126/scitranslmed.3010611.292ra100
    1. Giese A., Böhringer H. J., Leppert J., et al. Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors. Proceedings of the Photonic Therapeutics and Diagnostics II; January 2006; San Jose, Calif, USA.
    1. Lankenau E., Klinger D., Winter C., et al. Advances in Medical Engineering. Berlin, Germany: Springer; 2007. Combining optical coherence tomography (OCT) with an operating microscope; pp. 343–348.
    1. Grzybowski A., Barboni P. OCT in Central Nervous System Diseases. 1st. Cham, Switzerland: Springer; 2016.
    1. Svetozarskiy S. N., Kopishinskaya S. V. Retinal optical coherence tomography in neurodegenerative diseases (Review) Sovremennye Tehnologii v Medicine. 2015;7(1):116–123. doi: 10.17691/stm2015.7.1.14.
    1. Fujimoto J. G., Pitris C., Boppart S. A., Brezinski M. E. Optical coherence tomography : an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2:9–25. doi: 10.1038/sj.neo.7900071.
    1. Raghunathan R., Singh M., Dickinson M. E., Larin K. V. Optical coherence tomography for embryonic imaging: a review. Journal of Biomedical Optics. 2016;21(5) doi: 10.1117/1.JBO.21.5.050902.050902
    1. Lankenau E. M., Krug M., Oelckers S., Schrage N., Just T., Hüttmann G. iOCT with surgical microscopes: A new imaging during microsurgery. Advanced Optical Technologies. 2013;2(3):233–239. doi: 10.1515/aot-2013-0011.
    1. Böhringer H. J., Lankenau E., Rohde V., Hüttmann G., Giese A. Optical coherence tomography for experimental neuroendoscopy. Minimally Invasive Neurosurgery. 2006;49(5):269–275. doi: 10.1055/s-2006-954574.
    1. Kim J., Brown W., Maher J. R., Levinson H., Wax A. Functional optical coherence tomography: Principles and progress. Physics in Medicine and Biology. 2015;60(10):R211–R237. doi: 10.1088/0031-9155/60/10/R211.
    1. Böhringer H. J., Boller D., Leppert J., et al. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers in Surgery and Medicine. 2006;38(6):588–597. doi: 10.1002/lsm.20353.
    1. Wang H., Zhu J., Reuter M., et al. Cross-validation of serial optical coherence scanning and diffusion tensor imaging: A study on neural fiber maps in human medulla oblongata. NeuroImage. 2014;100:395–404. doi: 10.1016/j.neuroimage.2014.06.032.
    1. You J., Du C., Volkow N. D., Pan Y. Optical coherence doppler tomography for quantitative cerebral blood flow imaging. Biomedical Optics Express. 2014;5(9):3217–3230. doi: 10.1364/BOE.5.003217.A3217
    1. Merkle C. W., Srinivasan V. J. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography. NeuroImage. 2016;125:350–362. doi: 10.1016/j.neuroimage.2015.10.017.
    1. Leahy C., Radhakrishnan H., Srinivasan V. J. Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast. Biomedical Optics Express. 2013;4(10):1978–1990. doi: 10.1364/BOE.4.001978.
    1. Robles F. E., Wilson C., Grant G., Wax A. Molecular imaging true-colour spectroscopic optical coherence tomography. Nature Photonics. 2011;5(12):744–747. doi: 10.1038/nphoton.2011.257.
    1. Chong S. P., Merkle C. W., Cooke D. F., et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography. Optics Expresss. 2015;40(21):4911–4914. doi: 10.1364/OL.40.004911.
    1. Islam M. S. Optical Coherence Tomography for Structural Neuroimaging and Non-Contact Recording of Functionally Stimulated Neural Activity [phD thesis] Riverside, Calif, USA: University of California; 2013. .
    1. Nakaji H., Kouyama N., Muragaki Y., Kawakami Y., Iseki H. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. Journal of Neuroscience Methods. 2008;174(1):82–90. doi: 10.1016/j.jneumeth.2008.07.004.
    1. Watanabe H., Rajagopalan U. M., Nakamichi Y., et al. In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy. Biomedical Optics Express. 2011;2(8):2279–2287. doi: 10.1364/BOE.2.002279.
    1. Binding J., Ben Arous J., Léger J.-F., Gigan S., Boccara C., Bourdieu L. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Optics Express. 2011;19(6):4833–4847. doi: 10.1364/OE.19.004833.
    1. Arous J. B., Binding J., Léger J.-F., et al. Erratum: Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy. Journal of Biomedical Optics. 2011;16(11) doi: 10.1117/1.3662945.119802
    1. Wang H. Multi-contrast Optical Coherence Tomography for Brain Imaging and Mapping [phD thesis] Minneapolis, Minn, USA: The University of Minnesota; 2014. .
    1. Wang H., Zhu J., Akkin T. Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. NeuroImage. 2014;84:1007–1017. doi: 10.1016/j.neuroimage.2013.09.063.
    1. Boas D. A., Wang H., Magnain C., Fischl B. Polarization-sensitive optical coherence tomography of the human brain connectome. SPIE Newsroom. 2017 doi: 10.1117/2.1201701.006834.
    1. Chen W., You J., Gu X., Du C., Pan Y. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging. Scientific Reports. 2016;6(1) doi: 10.1038/srep38786. .
    1. Srinivasan V. J. Imaging Deep Brain Hemodynamics and Metabolism with Optical Coherence Tomography. Proceedings of the Optical Tomography and Spectroscopy; 2016; Fort Lauderdale, Florida. p. p. OTh2B.4.
    1. Radhakrishnan H., Srinivasan V. J. Compartment-resolved imaging of cortical functional hyperemia with OCT angiography. Biomedical Optics Express. 2013;4(8):1255–1268. doi: 10.1364/BOE.4.001255.
    1. Lee J., Radhakrishnan H., Wu1 W., et al. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography. Journal of Cerebral Blood Flow & Metabolism. 2013;33:819–825. doi: 10.1038/jcbfm.2013.20.
    1. Srinivasan V. J., Sakadžić S., Gorczynska I., et al. Quantitative cerebral blood flow with optical coherence tomography. Optics Express. 2010;18(3):2477–2494. doi: 10.1364/OE.18.002477.
    1. Chong S. P., Merkle C. W., Leahy C., Srinivasan V. J. Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT. Biomedical Optics Express. 2015;6(10, article A012):3941–3951. doi: 10.1364/BOE.6.003941.
    1. Park K., You J., Du C., Pan Y. Cranial window implantation on mouse cortex to study microvascular change induced by cocaine. Quantitative Imaging in Medicine and Surgery. 2015;5(1):97–107. doi: 10.3978/j.issn.2223-4292.2014.11.31.
    1. Li Y., Baran U., Wang R. K. Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography. PLoS ONE. 2014;9(11) doi: 10.1371/journal.pone.0113658.0113658
    1. Aguirre A. D., Chen Y., Fujimoto J. G., Ruvinskaya L., Devor A., Boas D. A. Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography. Optics Expresss. 2006;31(23):3459–3461. doi: 10.1364/OL.31.003459.
    1. Chen Y., Aguirre A. D., Ruvinskaya L., Devor A., Boas D. A., Fujimoto J. G. Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation. Journal of Neuroscience Methods. 2009;178(1):162–173. doi: 10.1016/j.jneumeth.2008.11.026.
    1. Chong S. P., Merkle C. W., Leahy C., Radhakrishnan H., Srinivasan V. J. Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography. Biomedical Optics Express. 2015;6(4, article A030):1429–1450. doi: 10.1364/BOE.6.001429.
    1. Yaseen M. A., Srinivasan V. J., Gorczynska I., Fujimoto J. G., Boas D. A., Sakadžić S. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism. Biomedical Optics Express. 2015;6(12):4994–5007. doi: 10.1364/BOE.6.004994.248448
    1. Kim S. A., Jun S. B. In-vivo optical measurement of neural activity in the brain. Experimental Neurobiology. 2013;22(3):158–166. doi: 10.5607/en.2013.22.3.158.
    1. Akkin T., Landowne D., Sivaprakasam A. Detection of neural action potentials using optical coherence tomography: intensity and phase measurements with and without dyes. Frontiers in Neuroenergetics. 2010;2:1–10. doi: 10.3389/fnene.2010.00022.
    1. Cohen L. B. Changes in neuron structure during action potential propagation and synaptic transmission. Physiological Reviews. 1973;53(2):373–418.
    1. Yeh Y.-J., Black A. J., Landowne D., Akkin T. Optical coherence tomography for cross-sectional imaging of neural activity. Neurophotonics. 2015;2(3) doi: 10.1117/1.NPh.2.3.035001.035001
    1. Watanabe H., Rajagopalan U. M., Nakamichi Y., Igarashi K. M., Kadono H., Tanifuji M. Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo. Biomedical Optics Express. 2011;2(11):3129–3134. doi: 10.1364/BOE.2.003129.
    1. Frohman E. M., Fujimoto J. G., Frohman T. C. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nature Clinical Practice Neurology. 2008;4(12):664–675. doi: 10.1038/ncpneuro0950.
    1. Petzold A. Optical Coherence Tomography in Multiple Sclerosis. 1st. Cham, Switzerland: Springer International Publishing; 2016.
    1. Syc S. B., Saidha S., Newsome S. D., et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain. 2012;135, part 2:521–533. doi: 10.1093/brain/awr264.
    1. Nakajima H., Motomura M., Tanaka K., et al. Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis. BMJ Open. 2015;5(4) doi: 10.1136/bmjopen-2015-007766.e007766
    1. Tian T., Zhu X. H., Liu Y. H. Potential role of retina as a biomarker for progression of Parkinson's disease. International Journal of Ophthalmology. 2011;4(4):433–438. doi: 10.3980/j.issn.2222-3959.2011.04.21.
    1. Jeon S. W., Shure M. A., Baker K. B., et al. A feasibility study of optical coherence tomography for guiding deep brain probes. Journal of Neuroscience Methods. 2006;154(1-2):96–101. doi: 10.1016/j.jneumeth.2005.12.008.
    1. Coppola G., Di Renzo A., Ziccardi L., et al. Optical coherence tomography in Alzheimer's disease: a meta-analysis. PLoS ONE. 2015;10(8) doi: 10.1371/journal.pone.0134750.e0134750
    1. Silverstein S. M., Rosen R. Schizophrenia and the eye. Schizophrenia Research: Cognition. 2015;2(2):46–55. doi: 10.1016/j.scog.2015.03.004.
    1. Semba K., Namekata K., Kimura A., Harada C., Mitamura Y., Harada T. Brimonidine prevents neurodegeneration in a mouse model of normal tension glaucoma. Cell Death & Disease. 2014;5(7, article e1341) doi: 10.1038/cddis.2014.306.
    1. Rosen D., Boeke A., Bernard J. Poster Session V - Biomarkers and Clinical Features of Motor Neuron Disease and Biomarkers in Peripheral Nerve Disorders: Retinal Degeneration Detectable by Optical Coherence Tomography as a Potential Biomarker for Amyotrophic Lateral Sclerosis (P5.043) April 20, 2016.
    1. McNeill A., Roberti G., Lascaratos G., et al. Retinal thinning in Gaucher disease patients and carriers: Results of a pilot study. Molecular Genetics and Metabolism. 2013;109(2):221–223. doi: 10.1016/j.ymgme.2013.04.001.
    1. Kalenderoglu A., Sevgi-Karadag A., Celik M., Egilmez O. B., Han-Almis B., Ozen M. E. Can the retinal ganglion cell layer (GCL) volume be a new marker to detect neurodegeneration in bipolar disorder? Comprehensive Psychiatry. 2016;67:66–72. doi: 10.1016/j.comppsych.2016.02.005.
    1. Avery R. A., Rajjoub R. D., Trimboli-Heidler C., Waldman A. T. Applications of optical coherence tomography in pediatric clinical neuroscience. Neuropediatrics. 2015;46(2):88–97. doi: 10.1055/s-0035-1549098.
    1. Baran U., Li Y., Wang R. K. Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke. Neurophotonics. 2015;2(2) doi: 10.1117/1.NPh.2.2.025006.15016PRR
    1. Streba C. T., Georgescu S. L., Jig M., Dinu M. A., Dinescu V. C., Bogdan C. Artificial neural network as an analyze tool for optical coherence tomography images of experimental stroke models - a pilot study. Physics AUC. 2015;25:1–8.
    1. Semyachkina-Glushkovskaya O., Pavlov A., Kurths J., et al. Optical monitoring of stress-related changes in the brain tissues and vessels associated with hemorrhagic stroke in newborn rats. Biomedical Optics Express. 2015;6(10, article A013):4088–4097. doi: 10.1364/BOE.6.004088.
    1. Balestrini S., Clayton L. M. S., Bartmann A. P., et al. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy. Journal of Neurology, Neurosurgery & Psychiatry. 2015:10–1136. doi: 10.1136/jnnp-2015-310521.
    1. Gomceli Y. B., Dogan B., Genc F., et al. Optical coherence tomography parameters in patients with photosensitive juvenile myoclonic epilepsy. Seizure. 2016;35:36–40. doi: 10.1016/j.seizure.2015.12.014.
    1. Tsytsarev V., Rao B., Maslov K. I., Li L., Wang L. V. Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. Journal of Neuroscience Methods. 2013;216(2):142–145. doi: 10.1016/j.jneumeth.2013.04.001.
    1. Osiac E., Bălşeanu T. A., Cătălin B., et al. Optical coherence tomography as a promising imaging tool for brain investigations. Romanian Journal of Morphology and Embryology. 2014;55(2):507–512.
    1. Jia Y., Alkayed N., Wang R. K. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo. Journal of Biomedical Optics. 2009;14(4) doi: 10.1117/1.3207121.040505
    1. Assayag O., Grieve K., Devaux B., et al. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. NeuroImage: Clinical. 2013;2(1):549–557. doi: 10.1016/j.nicl.2013.04.005.
    1. Yashin K. S., Karabut M. M., Fedoseeva V. V., et al. Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (Experimental study) Sovremennye Tehnologii v Medicine. 2016;8(1):73–80. doi: 10.17691/stm2016.8.1.10.
    1. Fakin A., Jarc-Vidmar M., Glavač D., Bonnet C., Petit C., Hawlina M. Fundus autofluorescence and optical coherence tomography in relation to visual function in Usher syndrome type 1 and 2. Vision Research. 2012;75:60–70. doi: 10.1016/j.visres.2012.08.017.
    1. Kopishinskaya S. V., Svetozarskiy S. N., Antonova V. A., Gustov A. V. The first data on retinal optical coherence tomography parameters in Huntington’s disease. European Journal of Neurology. 2014;21, article 36(1)
    1. Langwińska-Wośko E., Litwin T., Szulborski K., Członkowska A. Optical coherence tomography and electrophysiology of retinal and visual pathways in Wilson’s disease. Metabolic Brain Disease. 2016;31(2):405–415. doi: 10.1007/s11011-015-9776-8.
    1. Thomson K. L., Yeo J. M., Waddell B., Cameron J. R., Pal S. A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2015;1(2):136–143. doi: 10.1016/j.dadm.2015.03.001.
    1. Vermersch P., Outteryck O., Petzold A. Optical coherence tomography - A new monitoring tool for multiple sclerosis? European Neurological Review. 2010;5(1):73–77.
    1. Eberle M., Hsu M. S., Rodriguez C. L., et al. Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography. Biomedical Optics Express. 2015;6(5):1812–1827. doi: 10.1364/BOE.6.001812.
    1. Eberle M. M., Reynolds C. L., Szu J. I., et al. In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography. Biomedical Optics Express. 2012;3(11):2700–2706. doi: 10.1364/BOE.3.002700.
    1. Sudheendran N., Bake S., Miranda R. C., Larin K. V. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging. Journal of Biomedical Optics. 2013;18(2) doi: 10.1117/1.JBO.18.2.020506.020506
    1. Finke M., Schweikard A. Motorization of a surgical microscope for intra-operative navigation and intuitive control. The International Journal of Medical Robotics and Computer Assisted Surgery. 2010;6(3):269–280. doi: 10.1002/rcs.314.
    1. Finke M., Kantelhardt S., Schlaefer A., et al. Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography. The International Journal of Medical Robotics and Computer Assisted Surgery. 2012;8(3):327–336. doi: 10.1002/rcs.1425.
    1. Sun C., Lee K. K. C., Vuong B., et al. Intraoperative handheld optical coherence tomography forward-viewing probe: Physical performance and preliminary animal imaging. Biomedical Optics Express. 2012;3(6):1404–1412. doi: 10.1364/BOE.3.001404.
    1. Liang C.-P., Yang B., Kim I. K., et al. Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography. Journal of Biomedical Optics. 2013;18(4) doi: 10.1117/1.JBO.18.4.046015.046015
    1. Yoshimura S., Kawasaki M., Yamada K., et al. In: Optical Coherence Tomography (OCT): A New Imaging Tool During Carotid Artery Stenting, Optical Coherence Tomography. Kawasaki M., editor. Rijeka, Croatia: InTech; 2013. .
    1. Yoshimura S., Kawasaki M., Yamada K. OCT of Human Carotid Arterial Plaques. JCMG. 2011;4(4):432–436. doi: 10.1016/j.jcmg.2011.01.013.
    1. Wicks R. T., Huang Y., Zhang K., et al. Extravascular optical coherence tomography: Evaluation of carotid atherosclerosis and pravastatin therapy. Stroke. 2014;45(4):1123–1130. doi: 10.1161/STROKEAHA.113.002970.
    1. Hoffmann T., Boese A., Glaßer S., Skalej M., Beuing O. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures. Current Directions in Biomedical Engineering. 2015;1(1) doi: 10.1515/cdbme-2015-0064.
    1. Jones M. R., Attizzani G. F., Given C. A., et al. Intravascular frequency-domain optical coherence tomography assessment of carotid artery disease in symptomatic and asymptomatic patients. JACC: Cardiovascular Interventions. 2014;7(6):674–684. doi: 10.1016/j.jcin.2014.01.163.
    1. Giardini M. E., Zippo A. G., Valente M., Krstajic N., Biella G. E. M. Electrophysiological and anatomical correlates of spinal cord optical coherence tomography. PLoS ONE. 2016;11(4) doi: 10.1371/journal.pone.0152539.e0152539
    1. Ding Z., Tang Q., Liang C., et al. Imaging spinal structures with polarization-sensitive optical coherence tomography. IEEE Photonics Journal. 2016;8(5):1–8. doi: 10.1109/JPHOT.2016.2605447.
    1. Boppart S. A., Brezinski M. E., Bouma B. E., Tearney G. J., Fujimoto J. G. Investigation of developing embryonic morphology using optical coherence tomography. Developmental Biology. 1996;177(1):54–63. doi: 10.1006/dbio.1996.0144.
    1. Boppart S. A., Bouma B. E., Brezinski M. E., Tearney G. J., Fujimoto J. G. Imaging developing neural morphology using optical coherence tomography. Journal of Neuroscience Methods. 1996;70(1):65–72. doi: 10.1016/S0165-0270(96)00104-5.
    1. Syed S. H., Larin K. V., Dickinson M. E., Larina I. V. Optical coherence tomography for high-resolution imaging of mouse development in utero. Journal of Biomedical Optics. 2011;16(4) doi: 10.1117/1.3560300.046004
    1. Syed S. H., Larin K. V., Dickinson M. E., Larina I. V. Optical coherence tomography for high-resolution imaging of mouse development in utero. Journal of Biomedical Optics. 2011;16(4):046004–046006. doi: 10.1117/1.3560300.
    1. Magnain C., Augustinack J. C., Konukoglu E., et al. Optical coherence tomography visualizes neurons in human entorhinal cortex. Neurophotonics. 2015;2(1) doi: 10.1117/1.NPh.2.1.015004.14063RR
    1. Xu J., Wei W., Song S., Qi X., Wang R. K. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications. Biomedical Optics Express. 2016;7(5):1905–1919. doi: 10.1364/BOE.7.001905.259152
    1. Murphy M. C., Conner I. P., Teng C. Y., et al. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Scientific Reports. 2016;6 doi: 10.1038/srep31464.31464

Source: PubMed

3
Subscribe