From Whole-Brain Radiotherapy to Immunotherapy: A Multidisciplinary Approach for Patients with Brain Metastases from NSCLC

Maria Protopapa, Vassilis Kouloulias, Styliani Nikoloudi, Christos Papadimitriou, Giannis Gogalis, Anna Zygogianni, Maria Protopapa, Vassilis Kouloulias, Styliani Nikoloudi, Christos Papadimitriou, Giannis Gogalis, Anna Zygogianni

Abstract

Non-small cell lung cancer patients with brain metastases have a multitude of treatment options, but there is currently no international and multidisciplinary consensus concerning their optimal treatment. Local therapies have the principal role, especially in symptomatic patients. Advances in surgery and radiation therapy manage considerable local control. Systemic treatments have shown effect in clinical trials and in real life clinical settings; yet, at present, this is restricted to patients with asymptomatic or stable intracranial lesions. Targeted agents can have a benefit only in patients with EGFR mutations or ALK rearrangement. Immunotherapy has shown impressive results in patients with PD-L1 expression in tumor cells. Its effects can be further enhanced by a synergy with radiotherapy, possibly by increasing the percentage of responders. The present review summarizes the need for more effective systemic treatments, so that the increased intracranial control achieved by local treatments can be translated in an increase in overall survival.

References

    1. Ferlay J., Soerjomataram I., Dikshit R., et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210.
    1. Noone A., et al. SEER Cancer Statistics Review, 1975-2015. Bethesda, MD: National Cancer Institute; 2018.
    1. Siegel R. L., Miller K. D., Jemal A. Cancer statistics. CA: A Cancer Journal for Clinicians. 2018;68:7–30.
    1. Hess K. R., Varadhachary G. R., Taylor S. H., et al. Metastatic patterns in adenocarcinoma. Cancer. 2006;106(7):1624–1633. doi: 10.1002/cncr.21778.
    1. Oikawa A., Takahashi H., Ishikawa H., Kurishima K., Kagohashi K., Satoh H. Application of conditional probability analysis to distant metastases from lung cancer. Oncology Letters. 2012;3(3):629–634. doi: 10.3892/ol.2011.535.
    1. Riihimäki M., Hemminki A., Fallah M., et al. Metastatic sites and survival in lung cancer. Lung Cancer. 2014;86(1):78–84. doi: 10.1016/j.lungcan.2014.07.020.
    1. Tamura T., Kurishima K., Nakazawa K., et al. Specific organ metastases and survival in metastatic non-small-cell lung cancer. Molecular and Clinical Oncology. 2015;3:217–221.
    1. Kromer C., Xu J., Ostrom Q. T., et al. Estimating the annual frequency of synchronous brain metastasis in the United States 2010–2013: a population-based study. Journal of Neuro-Oncology. 2017;134(1):55–64. doi: 10.1007/s11060-017-2516-7.
    1. Goncalves P. H., Peterson S. L., Vigneau F. D., et al. Risk of brain metastases in patients with nonmetastatic lung cancer: Analysis of the Metropolitan Detroit Surveillance, Epidemiology, and End Results (SEER) data. Cancer. 2016;122(12):1921–1927. doi: 10.1002/cncr.30000.
    1. Barnholtz-Sloan J. S., Sloan A. E., Davis F. G., Vigneau F. D., Lai P., Sawaya R. E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. Journal of Clinical Oncology. 2004;22(14):2865–2872. doi: 10.1200/jco.2004.12.149.
    1. Agazzi S., Pampallona S., Pica A., et al. The origin of brain metastases in patients with an undiagnosed primary tumour. Acta Neurochirurgica. 2004;146(2):153–157. doi: 10.1007/s00701-003-0188-x.
    1. Bai H., Xu J., Yang H., et al. Survival prognostic factors for patients with synchronous brain oligometastatic non-small-cell lung carcinoma receiving local therapy. OncoTargets and Therapy. 2016;9:4207–4213. doi: 10.2147/OTT.S106696.
    1. Rangachari D., Yamaguchi N., VanderLaan P. A., et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer. 2015;88(1):108–111. doi: 10.1016/j.lungcan.2015.01.020.
    1. Heon S., Yeap B. Y., Lindeman N. I., et al. The impact of initial gefitinib or erlotinib versus chemotherapy on central nervous system progression in advanced non-small cell lung cancer with EGFR mutations. Clinical Cancer Research. 2012;18(16):4406–4414. doi: 10.1158/1078-0432.CCR-12-0357.
    1. Sperduto P. W., Yang T. J., Beal K., et al. The Effect of Gene Alterations and Tyrosine Kinase Inhibition on Survival and Cause of Death in Patients With Adenocarcinoma of the Lung and Brain Metastases. International Journal of Radiation Oncology • Biology • Physics. 2016;96(2):406–413. doi: 10.1016/j.ijrobp.2016.06.006.
    1. Sperduto P. W., Yang T. J., Beal K., et al. Estimating Survival in Patients With Lung Cancer and Brain Metastases: An Update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-molGPA) JAMA Oncology. 2017;3:827–831.
    1. Sperduto P. W., Kased. N., Roberge D., et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. Journal of Clinical Oncology. 2012;30:419–425.
    1. Gaspar L., Scott C., Rotman M., et al. Recursive Partitioning Analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. International Journal of Radiation Oncology, Biology and Physics. 1997;37(4):745–751. doi: 10.1016/s0360-3016(96)00619-0.
    1. Gibson A. J., Li H., D’Silva A., et al. Impact of number versus location of metastases on survival in stage IV M1b non-small cell lung cancer. Medical Oncology. 2018;35(9):p. 117. doi: 10.1007/s12032-018-1182-8.
    1. Hall W. A., Djalilian H. R., Nussbaum E. S., Cho K. H. Long-term survival with metastatic cancer to the brain. Medical Oncology. 2000;17:279–286. doi: 10.1007/BF02782192.
    1. Chao S. T., De Salles A., Hayashi M., et al. Stereotactic Radiosurgery in the Management of Limited (1-4) Brain Metasteses: Systematic Review and International Stereotactic Radiosurgery Society Practice Guideline. Neurosurgery. 2018;83(3):345–353. doi: 10.1093/neuros/nyx522.
    1. Muacevic A., Wowra B., Siefert A., Tonn J.-C., Steiger H.-J., Kreth F. W. Microsurgery plus whole brain irradiation versus Gamma Knife surgery alone for treatment of single metastases to the brain: a randomized controlled multicentre phase III trial. Journal of Neuro-Oncology. 2008;87(3):299–307. doi: 10.1007/s11060-007-9510-4.
    1. Muacevic A., Kreth F. W., Horstmann G. A., et al. Surgery and radiotherapy compared with gamma knife radiosurgery in the treatment of solitary cerebral metastases of small diameter. Journal of Neurosurgery. 1999;91(1):35–43.
    1. O'Neill B. P., Iturria N. J., Link M. J., Pollock B. E., Ballman K. V., O'Fallon J. R. A comparison of surgical resection and stereotactic radiosurgery in the treatment of solitary brain metastases. International Journal of Radiation Oncology • Biology • Physics. 2003;55(5):1169–1176. doi: 10.1016/S0360-3016(02)04379-1.
    1. Rades D., Kueter J.-D., Veninga T., Gliemroth J., Schild S. E. Whole brain radiotherapy plus stereotactic radiosurgery (WBRT + SRS) versus surgery plus whole brain radiotherapy (OP + WBRT) for 1-3 brain metastases: Results of a matched pair analysis. European Journal of Cancer. 2009;45(3):400–404. doi: 10.1016/j.ejca.2008.10.033.
    1. Pintea B., Baumert B., Kinfe T. M., Gousias K., Parpaley Y., Boström J. P. Early motor function after local treatment of brain metastases in the motor cortex region with stereotactic radiotherapy/radiosurgery or microsurgical resection: A retrospective study of two consecutive cohorts. Journal of Radiation Oncology. 2017;12(1):p. 177.
    1. Coburger J., Musahl C., Henkes H., et al. Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurgical Review. 2013;36(1):65–75. doi: 10.1007/s10143-012-0413-2.
    1. Patel A. J., Suki D., Hatiboglu M. A., et al. Factors influencing the risk of local recurrence after resection of a single brain metastasis. Journal of Neurosurgery. 2010;113(2):181–189. doi: 10.3171/2009.11.JNS09659.
    1. Yoo S., You D., Kim Y. S., Hong J. H., Ahn H., Kim C. Combination of Androgen Deprivation Therapy and Salvage Radiotherapy versus Salvage Radiotherapy Alone for Recurrent Prostate Cancer after Radical Prostatectomy. Urologia Internationalis. 2017;99(4):406–413. doi: 10.1159/000481265.
    1. Kamp M. A., Slotty P. J., Cornelius J. F., Steiger H.-J., Rapp M., Sabel M. The impact of cerebral metastases growth pattern on neurosurgical treatment. Neurosurgical Review. 2018;41(1):77–86. doi: 10.1007/s10143-016-0760-5.
    1. Fuentes R., Osorio D., Expósito Hernandez J., Simancas-Racines D., Martinez-Zapata M. J., Bonfill Cosp X. Surgery versus stereotactic radiotherapy for people with single or solitary brain metastasis. Cochrane Database of Systematic Reviews. 2018;8(CD012086) doi: 10.1002/14651858.CD012086.pub2.
    1. Patchell R. A., Tibbs P. A., Walsh J. W., et al. A randomized trial of surgery in the treatment of single metastases to the brain. The New England Journal of Medicine. 1990;322(8):494–500. doi: 10.1056/nejm199002223220802.
    1. Vecht C. J., Haaxma‐Reiche H., Noordijk E. M., et al. Treatment of single brain metastasis: Radiotherapy alone or combined with neurosurgery. Annals of Neurology. 1993;33(6):583–590. doi: 10.1002/ana.410330605.
    1. Mintz A. H., Kestle J., Rathbone M. P., et al. A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer. 1996;78(7):1470–1476. doi: 10.1002/(SICI)1097-0142(19961001)78:7<1470::AID-CNCR14>;2-X. doi: 10.1002/(SICI)1097-0142(19961001)78:7<1470::AID-CNCR14>;2-X.
    1. Macdonald D. R., Cairncross J. G. Surgery for single brain metastasis. The New England Journal of Medicine. 1990;323:132–133.
    1. Brastianos P. K., Carter S. L., Santagata S., et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov. 2015;5:1164–1177.
    1. Paik P. K., Shen R., Won H., et al. Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discovery. 2016;5(6):610–621. doi: 10.1158/-14-1129.
    1. Pan W., Gu W., Nagpal S., Gephart M. H., Quake S. R. Brain tumor mutations detected in cerebral spinal fluid. Clinical Chemistry. 2015;61(3):514–522. doi: 10.1373/clinchem.2014.235457.
    1. Pentsova E. I., Shah R. H., Tang J., et al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. Journal of Clinical Oncology. 2016;34(20):2404–2415. doi: 10.1200/JCO.2016.66.6487.
    1. Khanna K. K., Jackson S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 2001;27:247–254. doi: 10.1038/85798.
    1. Eriksson D., Stigbrand T. Radiation-induced cell death mechanisms. Tumor Biology. 2010;31(4):363–372. doi: 10.1007/s13277-010-0042-8.
    1. Slone H. B., Peters L. J., Milas L. Effect of Host Immune Capability on Radiocurability and Subsequent Transplantability of a Murine Fibrosarcoma. Journal of the National Cancer Institute. 1997;63:1229–1235.
    1. Siva S., MacManus M. P., Martin R. F., Martin O. A. Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Letters. 2015;356(1):82–90. doi: 10.1016/j.canlet.2013.09.018.
    1. Brown J. M., Carlson D. J., Brenner D. J. The Tumor Radiobiology of SRS and SBRT: Are More Than the 5 Rs Involved? Int. J. Radiat. Oncol. 2014;88:254–262.
    1. Song C. W., Kim M.-S., Cho L. C., Dusenbery K., Sperduto P. W. Radiobiological basis of SBRT and SRS. International Journal of Clinical Oncology. 2014;19:570–578.
    1. Kim M.-S., Kim W., Park I. H., et al. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery. Radiation Oncology Journal. 2015;33(4):265–275. doi: 10.3857/roj.2015.33.4.265.
    1. Diamant A., Chatterjee A., Faria S., et al. Can dose outside the PTV influence the risk of distant metastases in stage I lung cancer patients treated with stereotactic body radiotherapy (SBRT)? Radiotherapy & Oncology. 2018;128(3):513–519. doi: 10.1016/j.radonc.2018.05.012.
    1. Deeley T. J., Edwards J. M. Radiotherapy in the management of cerebral secondaries from bronchial carcinoma. The Lancet. 1968;1(7554):1209–1213.
    1. Ruderman N. B., Hall T. C. Use of glucocorticoids in the palliative treatment of metastatic brain tumors. Cancer. 1965;18(3):298–306. doi: 10.1002/1097-0142(196503)18:3<298::AID-CNCR2820180306>;2-H.
    1. Zimm S., Wampler G. L., Stablein D., Hazra T., Young H. F. Intracerebral metastases in solid‐tumor patients: Natural history and results of treatment. Cancer. 1981;48(2):384–394. doi: 10.1002/1097-0142(19810715)48:2<384::AID-CNCR2820480227>;2-8.
    1. Borgelt B., Gelber R., Kramer S., et al. The palliation of brain metastases: final results of the first two studies by the radiation therapy oncology group. International Journal of Radiation Oncology • Biology • Physics. 1980;6(1):1–9. doi: 10.1016/0360-3016(80)90195-9.
    1. Murray K. J., Scott C., Greenberg H. M., et al. A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: A report of the Radiation Therapy Oncology Group (RTOG) 9104. International Journal of Radiation Oncology • Biology • Physics. 1997;39(3):571–574. doi: 10.1016/s0360-3016(97)00341-6.
    1. T.Komarnicky L., Phillips T. L., Martz K., Asbell S., Isaacson S., Urtasun R. A randomized phase iii protocol for the evaluation of misonidazole combined with radiation in the treatment of patients with brain metastases (RTOG-7916) International Journal of Radiation Oncology • Biology • Physics. 1991;20(1):53–58. doi: 10.1016/0360-3016(91)90137-S.
    1. Priestman T. J., Dunn J., Brada M., Rampling R., Baker P. G. Final results of the Royal College of Radiologists trial comparing two different radiotherapy schedules in the treatment of cerebral metastases. Clinical Oncology journal (The Royal College of Radiologists) 1996;8:308–315. doi: 10.1016/S0936-6555(05)80717-4.
    1. Rades D., Bohlen G., Lohynska R., et al. Whole-brain radiotherapy with 20 Gy in 5 fractions for brain metastases in patients with cancer of unknown primary (CUP) Strahlentherapie und Onkologie. 2007;183(11):631–636. doi: 10.1007/s00066-007-1763-5.
    1. Borgelt B., Gelber R., Larson M., Hendrickson F., Griffin T., Roth R. Ultra-rapid high dose irradiation schedules for the palliation of brain metastases: final results of the first two studies by the radiation therapy oncology group. International Journal of Radiation Oncology • Biology • Physics. 1981;7(12):1633–1638. doi: 10.1016/0360-3016(81)90184-x.
    1. Yamamoto M., Serizawa T., Higuchi Y., et al. A Multi-institutional Prospective Observational Study of Stereotactic Radiosurgery for Patients With Multiple Brain Metastases (JLGK0901 Study Update): Irradiation-related Complications and Long-term Maintenance of Mini-Mental State Examination Scores. International Journal of Radiation Oncology • Biology • Physics. 2017;99(1):31–40. doi: 10.1016/j.ijrobp.2017.04.037.
    1. Patchell R. A., Tibbs P. A., Regine W. F., et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. Journal of the American Medical Association. 1998;280(17):1485–1489. doi: 10.1001/jama.280.17.1485.
    1. Mahajan A., Ahmed S., McAleer M. F., et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. The Lancet Oncology. 2017;18:1040–1048.
    1. Brown P. D., Soffietti R., Abacioglu U., et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. The Lancet Oncology. 2017;18:1049–1060.
    1. Kępka L., Tyc-Szczepaniak D., Bujko K., et al. Stereotactic radiotherapy of the tumor bed compared to whole brain radiotherapy after surgery of single brain metastasis: Results from a randomized trial. Radiotherapy & Oncology. 2016;121(2):217–224. doi: 10.1016/j.radonc.2016.10.005.
    1. Kayama T., Sato S., Sakurada K., et al. Effects of Surgery With Salvage Stereotactic Radiosurgery Versus Surgery With Whole-Brain Radiation Therapy in Patients With One to Four Brain Metastases (JCOG0504): A Phase III, Noninferiority, Randomized Controlled Trial. Journal of Clinical Oncology. 2018;36(33):3282–3289. doi: 10.1200/JCO.2018.78.6186.
    1. Mulvenna P., Nankivell M., Barton R., et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. The Lancet. 2016;388(10055):2004–2014. doi: 10.1016/S0140-6736(16)30825-X.
    1. Aoyama H., Shirato H., Tago M., et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. Journal of the American Medical Association. 2006;295(21):2483–2491. doi: 10.1001/jama.295.21.2483.
    1. Chang E. L., Wefel J. S., Hess K. R., et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. The Lancet Oncology. 2009;10(11):1037–1044. doi: 10.1016/s1470-2045(09)70263-3.
    1. Mekhail T., Sombeck M., Sollaccio R. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the eortc 22952-26001 study. Current Oncology Reports. 2011;13(4):255–258. doi: 10.1007/s11912-011-0180-1.
    1. Sahgal A., Aoyama H., Kocher M., et al. Phase 3 Trials of Stereotactic Radiosurgery With or Without Whole-Brain Radiation Therapy for 1 to 4 Brain Metastases: Individual Patient Data Meta-Analysis. International Journal of Radiation Oncology • Biology • Physics. 2015;91(4):710–717. doi: 10.1016/j.ijrobp.2014.10.024.
    1. Brown P. D., Jaeckle K., Ballman K. V., et al. Effect of Radiosurgery Alone vs Radiosurgery With Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA. 2016;316(4):401–409.
    1. Aoyama H., Tago M., Shirato H., et al. Stereotactic radiosurgery with or without whole-brain radiotherapy for brain metastases: Secondary analysis of the JROSG 99-1 randomized clinical trial. JAMA Oncology. 2015;1(4):457–464. doi: 10.1001/jamaoncol.2015.1145.
    1. Sperduto P. W., Shanley R., Luo X., et al. Secondary analysis of RTOG 9508, a Phase 3 randomized trial of whole-brain radiation therapy versus WBRT plus stereotactic radiosurgery in patients with 1-3 brain metastases; Poststratified by the graded prognostic assessment (GPA) International Journal of Radiation Oncology • Biology • Physics. 2014;90(3):526–531. doi: 10.1016/j.ijrobp.2014.07.002.
    1. Andrews D. W., Scott C. B., Sperduto P. W., et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. The Lancet. 2004;363(9422):1665–1672. doi: 10.1016/S0140-6736(04)16250-8.
    1. Fan Y., Huang Z., Fang L., et al. Chemotherapy and EGFR tyrosine kinase inhibitors for treatment of brain metastases from non-small-cell lung cancer: survival analysis in 210 patients. OncoTargets and Therapy. 2013;6:1789–1803.
    1. Bearz A., Garassino I., Tiseo M., et al. Activity of Pemetrexed on brain metastases from Non-Small Cell Lung Cancer. Lung Cancer. 2010;68(2):264–268. doi: 10.1016/j.lungcan.2009.06.018.
    1. He Q., Bi X., Ren C., et al. Phase II study of the efficacy and safety of high-dose pemetrexed in combination with cisplatin versus temozolomide for the treatment of non-small cell lung cancer with brain metastases. Anticancer Reseach. 2017;37(8):4711–4716. doi: 10.21873/anticanres.11877.
    1. He Q., Wang Y., Zou P., et al. Phase II Study of High-Dose Pemetrexed Plus Cisplatin as First-Line Chemotherapy In the Treatment of Patients with Brain Metastases from Lung Adenocarcinoma. World Neurosurgery. 2017;99:758–762. doi: 10.1016/j.wneu.2016.03.098.
    1. Sandler A., Gray R., Perry M. C., et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. The New England Journal of Medicine. 2006;355(24):2542–2550. doi: 10.1056/NEJMoa061884.
    1. Reck M., von Pawel J., Zatloukal P., et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. Journal of Clinical Oncology. 2009;27(14):1227–1234. doi: 10.1200/JCO.2009.23.1373.
    1. Ilhan-Mutlu A., Osswald M., Liao Y., et al. Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Molecular Cancer Therapeutics. 2016;15(4):702–710. doi: 10.1158/1535-7163.MCT-15-0582.
    1. Kienast Y., von Baumgarten L., Fuhrmann M., et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine. 2010;16(1):116–122. doi: 10.1038/nm.2072.
    1. Besse B., Le Moulec S., Mazières J., et al. Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): A nonrandomized, phase II study. Clinical Cancer Research. 2015;21(8):1896–1903. doi: 10.1158/1078-0432.CCR-14-2082.
    1. Vredenburgh J. J., Cloughesy T., Samant M., et al. Corticosteroid Use in Patients with Glioblastoma at First or Second Relapse Treated with Bevacizumab in the BRAIN Study. The Oncologist. 2010;15(12):1329–1334. doi: 10.1634/theoncologist.2010-0105.
    1. Ma Y., Zheng C., Feng Y., Xu Q. Bevacizumab for the Treatment of Gammaknife Radiosurgery-Induced Brain Radiation Necrosis. The Journal of Craniofacial Surgery. 2017;28(6):e569–e571. doi: 10.1097/SCS.0000000000003874.
    1. Matuschek C., Bölke E., Nawatny J., et al. Bevacizumab as a treatment option for radiation-induced cerebral necrosis. Strahlentherapie und Onkologie. 2011;187(2):135–139. doi: 10.1007/s00066-010-2184-4.
    1. Aslan A., Kaya Z. B., Bulduk E. B., et al. Prophylactic Bevacizumab May Mitigate Radiation Injury: An Experimental Study. World Neurosurgery. 2018;116:e791–e800. doi: 10.1016/j.wneu.2018.05.094.
    1. Garon E. B., Ciuleanu T.-E., Arrieta O., et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. The Lancet. 2014;384(9944):665–673. doi: 10.1016/S0140-6736(14)60845-X.
    1. Tanimura K., Uchino J., Tamiya N., et al. Treatment rationale and design of the RAMNITA study: A phase II study of the efficacy of docetaxel + ramucirumab for non-small cell lung cancer with brain metastasis. Medicine. 2018;97(23) doi: 10.1097/MD.0000000000011084.e11084
    1. Togashi Y., Masago K., Fukudo M., et al. Cerebrospinal fluid concentration of erlotinib and its active metabolite OSI-420 in patients with central nervous system metastases of non-small cell lung cancer. Journal of Thoracic Oncology. 2010;5(7):950–955. doi: 10.1097/JTO.0b013e3181e2138b.
    1. Soria J.-C., Ohe Y., Vansteenkiste J., et al. Osimertinib in Untreated EGFR -Mutated Advanced NonSmall-Cell Lung Cancer. The New England Journal of Medicine. 2018;378:113–125.
    1. Reungwetwattana T., Nakagawa K., Cho B. C., et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients With Untreated. Journal of Clinical Oncology. 2018;36(33):3290–3297. doi: 10.1200/JCO.2018.78.3118.
    1. Mok T. S., Wu Y.-L., Ahn M.-J., et al. Osimertinib or PlatinumPemetrexed in EGFR T790MPositive Lung Cancer. The New England Journal of Medicine. 2017;376:629–640.
    1. Wu Y., Ahn M., Garassino M. C., et al. CNS Efficacy of Osimertinib in Patients With T790M-Positive Advanced Non–Small-Cell Lung Cancer: Data From a Randomized Phase III Trial (AURA3) Journal of Clinical Oncology. 2018;36(26):2702–2709. doi: 10.1200/JCO.2018.77.9363.
    1. Yang J. C.-H., Wu Y.-L., Schuler M., et al. Afatinib versus cisplatin-based Chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. The Lancet Oncology. 2015;16(2):141–151. doi: 10.1016/s1470-2045(14)71173-8.
    1. Schuler M., Wu Y.-L., Hirsh V., et al. First-line afatinib versus chemotherapy in patients with non-small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. Journal of Thoracic Oncology. 2016;11(3):380–390. doi: 10.1016/j.jtho.2015.11.014.
    1. Yang J.-J., Zhou C., Huang Y., et al. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial. The Lancet Respiratory Medicine. 2017;5(9):707–716. doi: 10.1016/S2213-2600(17)30262-X.
    1. Soon Y. Y., Leong C. N., Koh W. Y., Tham I. W. K. EGFR tyrosine kinase inhibitors versus cranial radiation therapy for EGFR mutant non-small cell lung cancer with brain metastases: A systematic review and meta-analysis. Radiotherapy & Oncology. 2015;114(2):167–172. doi: 10.1016/j.radonc.2014.12.011.
    1. Jiang T., Su C., Li X., et al. EGFR TKIs plus WBRT demonstrated no survival benefit other than that of TKIs alone in patients with NSCLC and EGFR mutation and brain metastases. Journal of Thoracic Oncology. 2016;11(10):1718–1728. doi: 10.1016/j.jtho.2016.05.013.
    1. Zheng H., Liu Q.-X., Hou B., et al. Clinical outcomes of WBRT plus EGFR-TKIs versus WBRT or TKIs alone for the treatment of cerebral metastatic NSCLC patients: A meta-analysis. Oncotarget . 2017;8(34):57356–57364.
    1. Peters S., Camidge D. R., Shaw A. T., et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. The New England Journal of Medicine. 2017;377(9):829–838. doi: 10.1056/NEJMoa1704795.
    1. Costa D. B., Shaw A. T., Ou S.-H. I., et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. Journal of Clinical Oncology. 2015;33(17):1881–1888. doi: 10.1200/JCO.2014.59.0539.
    1. Johung K. L., Yeh N., Desai N. B., et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. Journal of Clinical Oncology. 2016;34(2):123–129. doi: 10.1200/JCO.2015.62.0138.
    1. Louveau A., Smirnov I., Keyes T. J., et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–341. doi: 10.1038/nature14432.
    1. Engelhardt B., Vajkoczy P., Weller R. O. The movers and shapers in immune privilege of the CNS. Nature Immunology. 2017;18(2):123–131. doi: 10.1038/ni.3666.
    1. Socinski M. A., Jotte R. M., Cappuzzo F., et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. The New England Journal of Medicine. 2018;378(24):2288–2301. doi: 10.1056/NEJMoa1716948.
    1. Fehrenbacher L., Spira A., Ballinger M., et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. The Lancet. 2016;387(10030):1837–1846. doi: 10.1016/s0140-6736(16)00587-0.
    1. Rittmeyer A., Barlesi F., Waterkamp D., et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. The Lancet. 2017;389(10066):255–265. doi: 10.1016/S0140-6736(16)32517-X.
    1. Gadgeel S., Ciardiello F., Rittmeyer A., et al. PL04a.02: OAK, a Randomized Ph III Study of Atezolizumab vs Docetaxel in Patients with Advanced NSCLC: Results from Subgroup Analyses. Journal of Thoracic Oncology. 2017;12(1):S9–S10. doi: 10.1016/j.jtho.2016.11.011.
    1. Lukas R., Gandhi M., O'Hear C., Hu S., Lai C., Patel J. P2.03b-014 Atezolizumab in Advanced NSCLC Patients with Baseline Brain Metastases: A Pooled Cohort Safety Analysis. Journal of Thoracic Oncology. 2017;12(1):S941–S942. doi: 10.1016/j.jtho.2016.11.1295.
    1. Borghaei H., Luis Paz-Ares M. D., Leora Horn M. D., et al. Nivolumab versus Docetaxel in Advanced Nonsquamous NonSmall-Cell Lung Cancer. The New England Journal of Medicine. 2015;373:1627–1639.
    1. Brahmer J., Reckamp M. D., Paul Baas M. D., et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell NonSmall-Cell Lung Cancer. The New England Journal of Medicine. 2015;373:123–135.
    1. Tamiya M., Tamiya A., Inoue T., et al. Metastatic site as a predictor of nivolumab efficacy in patients with advanced non-small cell lung cancer: A retrospective multicenter trial. PLoS ONE. 2018;13(2):p. e0192227. doi: 10.1371/journal.pone.0192227.
    1. Areses Manrique M. C., Mosquera Martínez J., García González J., et al. Real world data of nivolumab for previously treated non-small cell lung cancer patients: a Galician lung cancer group clinical experience. Translational Lung Cancer Research. 2018;7(3):404–415. doi: 10.21037/tlcr.2018.04.03.
    1. Gauvain C., Vauléon E., Chouaid C., et al. Intracerebral efficacy and tolerance of nivolumab in non–small-cell lung cancer patients with brain metastases. Lung Cancer. 2018;116:62–66. doi: 10.1016/j.lungcan.2017.12.008.
    1. Dudnik E., Yust-Katz S., Nechushtan H., et al. Intracranial response to nivolumab in NSCLC patients with untreated or progressing CNS metastases. Lung Cancer. 2016;98:114–117. doi: 10.1016/j.lungcan.2016.05.031.
    1. Langer C. J., Gadgeel S. M., Borghaei H., et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. The Lancet Oncology. 2016;17(11):1497–1508. doi: 10.1016/S1470-2045(16)30498-3.
    1. Reck M., Rodríguez-Abreu D., Robinson A. G., et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. The New England Journal of Medicine. 2016;375(19):1823–1833. doi: 10.1056/nejmoa1606774.
    1. Borghaei H., Langer C. J., Gadgeel S., et al. 24-Month Overall Survival from KEYNOTE-021 Cohort G: Pemetrexed and Carboplatin with or without Pembrolizumab as First-Line Therapy for Advanced Nonsquamous Non–Small Cell Lung Cancer. Journal of Thoracic Oncology. 2019;14(1):124–129. doi: 10.1016/j.jtho.2018.08.004.
    1. Herbst R. S., et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non- small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–1550.
    1. Goldberg S. B., Gettinger S. N., Mahajan A., et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. The Lancet Oncology. 2016;17:976–983.
    1. Afzal M. Z., Dragnev K., Shirai K. A tertiary care cancer center experience with carboplatin and pemetrexed in combination with pembrolizumab in comparison with carboplatin and pemetrexed alone in non-squamous non-small cell lung cancer. Journal of Thoracic Disease. 2018;10:3575–3584. doi: 10.21037/jtd.2018.06.08.
    1. Aboudaram A., Chaltiel L., Gomez-Roca C., et al. Concurrent radiotherapy for patients with metastatic melanoma and receiving anti- programmed-death 1 therapy. Melanoma Research. 2017;27:485–491.
    1. Koller K. M., Mackley H. B., Liu J., et al. Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone. Cancer Biology & Therapy. 2017;18(1):36–42. doi: 10.1080/15384047.2016.1264543.
    1. Reynders K., Illidge T., Siva S., Chang J. Y., De Ruysscher D. The abscopal effect of local radiotherapy: Using immunotherapy to make a rare event clinically relevant. Cancer Treatment Reviews. 2015;41(6):503–510. doi: 10.1016/j.ctrv.2015.03.011.
    1. Cong Y., Shen G., Wu S., Hao R. Abscopal regression following SABR for non-small-cell-lung cancer: A case report. Cancer Biology & Therapy. 2017;18(1):1–3. doi: 10.1080/15384047.2016.1264541.
    1. Golden E. B., Demaria S., Schiff P. B., Chachoua A., Formenti S. C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunology Research. 2013;1(6):365–372. doi: 10.1158/2326-6066.cir-13-0115.
    1. Britschgi C., Riesterer O., Burger I. A., Guckenberger M., Curioni-Fontecedro A. Report of an abscopal effect induced by stereotactic body radiotherapy and nivolumab in a patient with metastatic non- small cell lung cancer. Radiation Oncology. 2018;13:p. 102. doi: 10.1186/s13014-018-1049-3.
    1. Siva S., Callahan J., MacManus M. P., Martin O., Hicks R. J., Ball D. L. Abscopal Effects after Conventional and Stereotactic Lung Irradiation of Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology. 2013;8(8):e71–e72. doi: 10.1097/JTO.0b013e318292c55a.
    1. Rees G. J. G., Ross C. M. D. Abscopal regression following radiotherapy for adenocarcinoma. The British Journal of Radiology. 1983;56:63–66. doi: 10.1259/0007-1285-56-661-63.
    1. Chuang C., Hsu J., Shen Y., Yang C. Regression of a metastatic lung mass after receiving whole brain irradiation: Can the abscopal effect cross the blood-brain barrier? Asia-Pacific Journal of Clinical Oncology. 2018;14(5):e548–e550. doi: 10.1111/ajco.13051.
    1. Rodríguez-Ruiz M. E., Vanpouille-Box C., Melero I., Formenti S. C., Demaria S. Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends in Immunology. 2018;39(8):644–655. doi: 10.1016/j.it.2018.06.001.
    1. Patel K. R., Martinez A., Stahl J. M., et al. Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. OncoImmunology. 2018;7(7):p. e1442168. doi: 10.1080/2162402X.2018.1442168.
    1. Shaverdian N., Lisberg A. E., Bornazyan K., et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. The Lancet Oncology. 2017;18(7):895–903. doi: 10.1016/S1470-2045(17)30380-7.
    1. Antonia S. J., Augusto Villegas M. D., Davey Daniel M. D., et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. The New England Journal of Medicine. 2017;377:1919–1929.
    1. Pillai R. N., Behera M., Owonikoko T. K., et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non–small cell lung cancer: A systematic analysis of the literature. Cancer. 2018;124(2):271–277. doi: 10.1002/cncr.31043.
    1. Khunger M., Rakshit S., Pasupuleti V., et al. Incidence of Pneumonitis With Use of Programmed Death 1 and Programmed Death-Ligand 1 Inhibitors in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis of Trials. CHEST. 2017;152(2):271–281. doi: 10.1016/j.chest.2017.04.177.
    1. Chen L., Douglass J., Kleinberg L., et al. Concurrent Immune Checkpoint Inhibitors and Stereotactic Radiosurgery for Brain Metastases in Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Carcinoma. International Journal of Radiation Oncology • Biology • Physics. 2018;100(4):916–925. doi: 10.1016/j.ijrobp.2017.11.041.
    1. Schapira E., Hubbeling H., Yeap B. Y., et al. Improved Overall Survival and Locoregional Disease Control With Concurrent PD-1 Pathway Inhibitors and Stereotactic Radiosurgery for Lung Cancer Patients With Brain Metastases. International Journal of Radiation Oncology • Biology • Physics. 2018;101(3):624–629. doi: 10.1016/j.ijrobp.2018.02.175.
    1. Ahmed K. A., Kim S., Arrington J., et al. Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases. Journal of Neuro-Oncology. 2017;133(2):331–338. doi: 10.1007/s11060-017-2437-5.
    1. Ostgathe C., Gaertner J., Kotterba M., et al. Differential palliative care issues in patients with primary and secondary brain tumours. Supportive Care in Cancer. 2010;18(9):1157–1163. doi: 10.1007/s00520-009-0735-y.
    1. Dover L. L., Dulaney C. R., Williams C. P., et al. Hospice care, cancer-directed therapy, and Medicare expenditures among older patients dying with malignant brain tumors. Neuro-Oncology. 2018;20(7):986–993. doi: 10.1093/neuonc/nox220.
    1. Glantz M. J., Cole B. F., Forsyth P. A., et al. Practice parameter: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2000;54(10):1886–1893. doi: 10.1212/WNL.54.10.1886.
    1. Ly K. I., Wen P. Y. Clinical Relevance of Steroid Use in Neuro-Oncology. Current Neurology and Neuroscience Reports. 2017;17(1, 5) doi: 10.1007/s11910-017-0713-6.
    1. Scott S. C., Pennell N. A. Early Use of Systemic Corticosteroids in Patients with Advanced NSCLC Treated with Nivolumab. Journal of Thoracic Oncology. 2018;13(11):1771–1775. doi: 10.1016/j.jtho.2018.06.004.
    1. Arbour K. C., Mezquita L., Long N., et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2018;36(28):2872–2878. doi: 10.1200/JCO.2018.79.0006.
    1. Brown P. D., Pugh S., Laack N. N., et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15(10):1429–1437. doi: 10.1093/neuonc/not114.

Source: PubMed

3
Subscribe