Rheumatoid arthritis T cell and muscle oxidative metabolism associate with exercise-induced changes in cardiorespiratory fitness

Brian J Andonian, Alec Koss, Timothy R Koves, Elizabeth R Hauser, Monica J Hubal, David M Pober, Janet M Lord, Nancie J MacIver, E William St Clair, Deborah M Muoio, William E Kraus, David B Bartlett, Kim M Huffman, Brian J Andonian, Alec Koss, Timothy R Koves, Elizabeth R Hauser, Monica J Hubal, David M Pober, Janet M Lord, Nancie J MacIver, E William St Clair, Deborah M Muoio, William E Kraus, David B Bartlett, Kim M Huffman

Abstract

Rheumatoid arthritis (RA) T cells drive autoimmune features via metabolic reprogramming that reduces oxidative metabolism. Exercise training improves cardiorespiratory fitness (i.e., systemic oxidative metabolism) and thus may impact RA T cell oxidative metabolic function. In this pilot study of RA participants, we took advantage of heterogeneous responses to a high-intensity interval training (HIIT) exercise program to identify relationships between improvements in cardiorespiratory fitness with changes in peripheral T cell and skeletal muscle oxidative metabolism. In 12 previously sedentary persons with seropositive RA, maximal cardiopulmonary exercise tests, fasting blood, and vastus lateralis biopsies were obtained before and after 10 weeks of HIIT. Following HIIT, improvements in RA cardiorespiratory fitness were associated with changes in RA CD4 + T cell basal and maximal respiration and skeletal muscle carnitine acetyltransferase (CrAT) enzyme activity. Further, changes in CD4 + T cell respiration were associated with changes in naïve CD4 + CCR7 + CD45RA + T cells, muscle CrAT, and muscle medium-chain acylcarnitines and fat oxidation gene expression profiles. In summary, modulation of cardiorespiratory fitness and molecular markers of skeletal muscle oxidative metabolism during exercise training paralleled changes in T cell metabolism. Exercise training that improves RA cardiorespiratory fitness may therefore be valuable in managing pathologically related immune and muscle dysfunction.Trial registration: ClinicalTrials.gov, NCT02528344. Registered on 19 August 2015.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
HIIT improves cardiorespiratory fitness in association with changes in RA CD4 + T cell oxidative function. Graphs show changes from before (Pre-HIIT) to after (Post-HIIT) high-intensity interval training (HIIT) in individual rheumatoid arthritis (RA) participant (subgroup n = 6) (A) cardiorespiratory fitness (relative VO2; ml/kg/min) and peripheral CD4 + T cell (B) basal, (C) ATP-linked, and (D) maximal respiration (oxygen consumption rate; ρmol O2/minute), and (E) basal oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) ratio (OCR/ECAR ratio; ρmol/mpH). (F) Scatter plot depicts relationship between percent change in RA peripheral CD4 + T cell basal respiration (y-axis) and percent change in relative peak VO2 (x-axis) following HIIT. (G) Scatter plot depicts relationship between percent change in RA peripheral CD4 + T cell maximal respiration (y-axis) and percent change in relative peak VO2 (x-axis) following HIIT. (H) Scatter plot depicts relationship between percent change in RA CD4 + T cell OCR/ECAR ratio (y-axis) and percent change in relative peak VO2 (x-axis) following HIIT. *p < 0.05 for paired t-tests and Spearman correlations.
Figure 2
Figure 2
Changes in RA T cell oxidative metabolism following HIIT are associated with changes in naïve T cells. (A) Graphs show changes in rheumatoid arthritis (RA) peripheral CD3 + CD4 + helper T cells, CD3 + CD4- non-helper T cells, CD3-CD19 + B cells, CD3-CD56 + natural killer cells, and CD3 + CD56 + natural killer T cells following high-intensity interval training (HIIT) (subgroup n = 6; p > 0.05 for all pre-HIIT versus post-HIIT comparisons). (B) Graphs show changes in RA peripheral naïve CCR7 + CD45RA + , central memory CCR7 + CD45RA-, effector memory CCR7-CD45RA-, and terminally differentiated CCR7-CD45RA + CD4 + T cells following HIIT (p > 0.05 for all pre-HIIT versus post-HIIT comparisons). (C) Scatter plot depicts relationship between percent change in RA peripheral CD4 + T cell ATP linked respiration (y-axis) and percent change in peripheral naïve CD4 + T cells (x-axis) following HIIT. *p < 0.05 for paired t-tests and Spearman correlations.
Figure 3
Figure 3
HIIT increases RA skeletal muscle carnitine acetyltransferase enzyme activity in association with increased cardiorespiratory fitness and changes in CD4 + T cell oxidative function. Graphs show individual rheumatoid arthritis (RA) participant (subgroup n = 9) (A) cardiorespiratory fitness (relative VO2; ml/kg/min), skeletal muscle (B) carnitine acetyltransferase (mCrAT) and (C) citrate synthase enzyme activity (μmol/min/g) before (Pre-HIIT) and after (Post-HIIT) high-intensity interval training (HIIT). (D) Graphs show individual RA participant protein expression of mitochondrial complexes II, III, and V and electron transfer flavoprotein (ETF) Pre-HIIT and Post-HIIT. (E) Scatter plot depicts relationship between percent change in RA mCrAT enzyme activity (y-axis) and percent change and percent change in relative peak VO2 (ml/kg/min) (x-axis) following HIIT. (F) Scatter plot depicts relationship between percent change in RA mCrAT enzyme acitivity (y-axis) and percent change and percent change in peripheral CD4 + T cell ATP linked respiration (y-axis) following HIIT. *p < 0.05 for paired t-tests and Spearman correlations.
Figure 4
Figure 4
Changes in RA T cell respiration associate with changes in skeletal muscle acylcarnitine concentrations and increases in oxidative metabolism gene transcripts. (A) Heat map depicts correlations (Spearman’s rho) between percent change in rheumatoid arthritis (RA) peripheral CD4 + T cell respiration with plasma metabolites following high-intensity interval training (HIIT) (subgroup n = 6). (B) Heat map depicts correlations between percent change in RA peripheral CD4 + T cell respiration with skeletal muscle metabolites following HIIT (subgroup n = 6). (C) Heat map depicts correlations between percent change in RA peripheral CD4 + T cell respiration with skeletal muscle RNA with molecular relationships to carnitine acetyltransferase pathways (subgroup n = 6). *p < 0.05 (without multiple testing correction) for −0.8 ≤ rho ≤ 0.8. m Muscle, C Acylcarnitine.

References

    1. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376(9746):1094–1108. doi: 10.1016/S0140-6736(10)60826-4.
    1. Maradit-Kremers H, Crowson CS, Nicola PJ, Ballman KV, Roger VL, Jacobsen SJ, et al. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: A population-based cohort study. Arthritis Rheum. 2005;52(2):402–411. doi: 10.1002/art.20853.
    1. Pinheiro FA, Souza DC, Sato EI. A study of multiple causes of death in rheumatoid arthritis. J Rheumatol. 2015;42(12):2221–2228. doi: 10.3899/jrheum.150166.
    1. Sparks JA, Chang SC, Liao KP, Lu B, Fine AR, Solomon DH, et al. Rheumatoid arthritis and mortality among women during 36 years of prospective follow-up: Results from the nurses' health study. Arthritis Care Res. 2016;68(6):753–762. doi: 10.1002/acr.22752.
    1. Sokka T, Hakkinen A, Kautiainen H, Maillefert JF, Toloza S, Mork Hansen T, et al. Physical inactivity in patients with rheumatoid arthritis: Data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum. 2008;59(1):42–50. doi: 10.1002/art.23255.
    1. Hakkinen A, Kautiainen H, Hannonen P, Ylinen J, Makinen H, Sokka T. Muscle strength, pain, and disease activity explain individual subdimensions of the Health Assessment Questionnaire disability index, especially in women with rheumatoid arthritis. Ann Rheum Dis. 2006;65(1):30–34. doi: 10.1136/ard.2004.034769.
    1. Huffman KM, Pieper CF, Hall KS, St Clair EW, Kraus WE. Self-efficacy for exercise, more than disease-related factors, is associated with objectively assessed exercise time and sedentary behaviour in rheumatoid arthritis. Scand. J. Rheumatol. 2015;44(2):106–110. doi: 10.3109/03009742.2014.931456.
    1. Giles JT, Ling SM, Ferrucci L, Bartlett SJ, Andersen RE, Towns M, et al. Abnormal body composition phenotypes in older rheumatoid arthritis patients: Association with disease characteristics and pharmacotherapies. Arthritis Rheum. 2008;59(6):807–815. doi: 10.1002/art.23719.
    1. Huffman KM, Jessee R, Andonian B, Davis BN, Narowski R, Huebner JL, et al. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res. Ther. 2017;19(1):12. doi: 10.1186/s13075-016-1215-7.
    1. Li Y, Goronzy JJ, Weyand CM. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp. Gerontol. 2018;105:118–127. doi: 10.1016/j.exger.2017.10.027.
    1. Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 2013;210(10):2119–2134. doi: 10.1084/jem.20130252.
    1. Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev. 2020;294(1):177–187. doi: 10.1111/imr.12838.
    1. Liu X, Tedeschi SK, Lu B, Zaccardelli A, Speyer CB, Costenbader KH, et al. Long-term physical activity and subsequent risk for rheumatoid arthritis among women: A prospective cohort study. Arthritis Rheumatol. 2019;71(9):1460–1471. doi: 10.1002/art.40899.
    1. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: a scientific statement from the american heart association. Circulation. 2016;134(24):e653–e699. doi: 10.1161/CIR.0000000000000461.
    1. Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat. Rev. Rheumatol. 2015;11(2):86–97. doi: 10.1038/nrrheum.2014.193.
    1. Bartlett DB, Willis LH, Slentz CA, Hoselton A, Kelly L, Huebner JL, et al. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: A pilot study. Arthritis Res. Ther. 2018;20(1):127. doi: 10.1186/s13075-018-1624-x.
    1. Andonian BJ, Bartlett DB, Huebner JL, Willis L, Hoselton A, Kraus VB, et al. Effect of high-intensity interval training on muscle remodeling in rheumatoid arthritis compared to prediabetes. Arthritis Res. Ther. 2018;20(1):283. doi: 10.1186/s13075-018-1786-6.
    1. Andonian BJ, Johannemann A, Hubal MJ, Pober DM, Koss A, Kraus WE, et al. Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis. Arthritis Res. Ther. 2021;23(1):187. doi: 10.1186/s13075-021-02570-3.
    1. Busquets-Cortes C, Capo X, Martorell M, Tur JA, Sureda A, Pons A. Training enhances immune cells mitochondrial biosynthesis, fission, fusion, and their antioxidant capabilities synergistically with dietary docosahexaenoic supplementation. Oxid. Med. Cell Longev. 2016;2016:8950384. doi: 10.1155/2016/8950384.
    1. Busquets-Cortes C, Capo X, Bibiloni MDM, Martorell M, Ferrer MD, Argelich E, et al. Peripheral blood mononuclear cells antioxidant adaptations to regular physical activity in elderly people. Nutrients. 2018;10(10):1555. doi: 10.3390/nu10101555.
    1. Gordon PM, Liu D, Sartor MA, IglayReger HB, Pistilli EE, Gutmann L, et al. Resistance exercise training influences skeletal muscle immune activation: A microarray analysis. J. Appl. Physiol. (1985) 2012;112(3):443–453. doi: 10.1152/japplphysiol.00860.2011.
    1. Liu D, Wang R, Grant AR, Zhang J, Gordon PM, Wei Y, et al. Immune adaptation to chronic intense exercise training: New microarray evidence. BMC Genomics. 2017;18(1):29. doi: 10.1186/s12864-016-3388-5.
    1. Tsai HH, Chang SC, Chou CH, Weng TP, Hsu CC, Wang JS. Exercise training alleviates hypoxia-induced mitochondrial dysfunction in the lymphocytes of sedentary males. Sci. Rep. 2016;6:35170. doi: 10.1038/srep35170.
    1. Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat. Immunol. 2021;22(1):10–18. doi: 10.1038/s41590-020-00816-x.
    1. Dorneles GP, da Silva I, Boeira MC, Valentini D, Fonseca SG, Dal Lago P, et al. Cardiorespiratory fitness modulates the proportions of monocytes and T helper subsets in lean and obese men. Scand. J. Med. Sci. Sports. 2019;29(11):1755–1765. doi: 10.1111/sms.13506.
    1. Silva LC, de Araujo AL, Fernandes JR, Matias Mde S, Silva PR, Duarte AJ, et al. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. Age. 2016;38(1):24. doi: 10.1007/s11357-016-9879-0.
    1. Spielmann G, McFarlin BK, O'Connor DP, Smith PJ, Pircher H, Simpson RJ. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav. Immun. 2011;25(8):1521–1529. doi: 10.1016/j.bbi.2011.07.226.
    1. Rodriguez IJ, Lalinde Ruiz N, Llano Leon M, Martinez Enriquez L, Montilla Velasquez MDP, Ortiz Aguirre JP, et al. Immunosenescence study of T cells: A systematic review. Front. Immunol. 2020;11:604591. doi: 10.3389/fimmu.2020.604591.
    1. Zhang J, He T, Xue L, Guo H. Senescent T cells: A potential biomarker and target for cancer therapy. EBioMedicine. 2021;68:103409. doi: 10.1016/j.ebiom.2021.103409.
    1. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu. Rev. Physiol. 2019;81:19–41. doi: 10.1146/annurev-physiol-020518-114310.
    1. Seiler SE, Koves TR, Gooding JR, Wong KE, Stevens RD, Ilkayeva OR, et al. Carnitine acetyltransferase mitigates metabolic inertia and muscle fatigue during exercise. Cell Metab. 2015;22(1):65–76. doi: 10.1016/j.cmet.2015.06.003.
    1. Huffman KM, Koves TR, Hubal MJ, Abouassi H, Beri N, Bateman LA, et al. Metabolite signatures of exercise training in human skeletal muscle relate to mitochondrial remodelling and cardiometabolic fitness. Diabetologia. 2014;57(11):2282–2295. doi: 10.1007/s00125-014-3343-4.
    1. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27.
    1. UniProt C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–D515. doi: 10.1093/nar/gky1049.
    1. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 2013;31:259–283. doi: 10.1146/annurev-immunol-032712-095956.
    1. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48(2):202–213. doi: 10.1016/j.immuni.2018.01.007.
    1. Busquets-Cortes C, Capo X, Martorell M, Tur JA, Sureda A, Pons A. Training and acute exercise modulates mitochondrial dynamics in football players' blood mononuclear cells. Eur. J. Appl. Physiol. 2017;117(10):1977–1987. doi: 10.1007/s00421-017-3684-z.
    1. Hedges CP, Woodhead JST, Wang HW, Mitchell CJ, Cameron-Smith D, Hickey AJR, et al. Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. J. Appl. Physiol. (1985) 2019;126(2):454–461. doi: 10.1152/japplphysiol.00777.2018.
    1. Steensberg A, Toft AD, Bruunsgaard H, Sandmand M, Halkjaer-Kristensen J, Pedersen BK. Strenuous exercise decreases the percentage of type 1 T cells in the circulation. J. Appl. Physiol. (1985) 2001;91(4):1708–1712. doi: 10.1152/jappl.2001.91.4.1708.
    1. Kakanis MW, Peake J, Brenu EW, Simmonds M, Gray B, Marshall-Gradisnik SM. T helper cell cytokine profiles after endurance exercise. J. Interferon Cytokine Res. 2014;34(9):699–706. doi: 10.1089/jir.2013.0031.
    1. Jin JO, Han X, Yu Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J. Autoimmun. 2013;40:28–44. doi: 10.1016/j.jaut.2012.07.009.
    1. Lavin. K. M., Perkins, R., Jemiolo, B., Raue, U., Trappe, S. W., Trappe, T. A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J. Appl. Physiol. (1985) (2019).
    1. Weinhold M, Shimabukuro-Vornhagen A, Franke A, Theurich S, Wahl P, Hallek M, et al. Physical exercise modulates the homeostasis of human regulatory T cells. J. Allergy Clin. Immunol. 2016;137(5):1607–1610.e8. doi: 10.1016/j.jaci.2015.10.035.
    1. Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. J. Sport Health Sci. 2019;8(3):201–217. doi: 10.1016/j.jshs.2018.09.009.
    1. Muoio DM, Neufer PD. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab. 2012;15(5):595–605. doi: 10.1016/j.cmet.2012.04.010.
    1. Seiler SE, Martin OJ, Noland RC, Slentz DH, DeBalsi KL, Ilkayeva OR, et al. Obesity and lipid stress inhibit carnitine acetyltransferase activity. J. Lipid Res. 2014;55(4):635–644. doi: 10.1194/jlr.M043448.
    1. Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J. Biol. Chem. 2009;284(34):22840–22852. doi: 10.1074/jbc.M109.032888.
    1. Muoio DM, Noland RC, Kovalik JP, Seiler SE, Davies MN, DeBalsi KL, et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 2012;15(5):764–777. doi: 10.1016/j.cmet.2012.04.005.
    1. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010;69(9):1580–1588. doi: 10.1136/ard.2010.138461.
    1. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand. J. Clin. Lab Invest. 1975;35(7):609–616. doi: 10.3109/00365517509095787.
    1. Lindeboom L, Nabuurs CI, Hoeks J, Brouwers B, Phielix E, Kooi ME, et al. Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. J. Clin. Invest. 2014;124(11):4915–4925. doi: 10.1172/JCI74830.
    1. DeBalsi KL, Wong KE, Koves TR, Slentz DH, Seiler SE, Wittmann AH, et al. Targeted metabolomics connects thioredoxin-interacting protein (TXNIP) to mitochondrial fuel selection and regulation of specific oxidoreductase enzymes in skeletal muscle. J. Biol. Chem. 2014;289(12):8106–8120. doi: 10.1074/jbc.M113.511535.
    1. Vigelsø AAN, Dela F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol. 2014;6(2):84–101.
    1. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–326. doi: 10.1016/j.cmet.2009.02.002.
    1. Haqq AM, Lien LF, Boan J, Arlotto M, Slentz CA, Muehlbauer MJ, et al. The Study of the Effects of Diet on Metabolism and Nutrition (STEDMAN) weight loss project: Rationale and design. Contemp. Clin. Trials. 2005;26(6):616–625. doi: 10.1016/j.cct.2005.09.003.

Source: PubMed

3
Subscribe