Remote ischemic preconditioning reduces perioperative cardiac and renal events in patients undergoing elective coronary intervention: a meta-analysis of 11 randomized trials

Hanjun Pei, Yongjian Wu, Yingjie Wei, Yuejin Yang, Siyong Teng, Haitao Zhang, Hanjun Pei, Yongjian Wu, Yingjie Wei, Yuejin Yang, Siyong Teng, Haitao Zhang

Abstract

Background: Results from randomized controlled trials (RCT) concerning cardiac and renal effect of remote ischemic preconditioning(RIPC) in patients with stable coronary artery disease(CAD) are inconsistent. The aim of this study was to explore whether RIPC reduce cardiac and renal events after elective percutaneous coronary intervention (PCI).

Methods and results: RCTs with data on cardiac or renal effect of RIPC in PCI were searched from Pubmed, EMBase, and Cochrane library (up to July 2014). Meta-regression and subgroup analysis were performed to identify the potential sources of significant heterogeneity(I(2) ≥ 40%). Eleven RCTs enrolling a total of 1713 study subjects with stable CAD were selected. Compared with controls, RIPC significantly reduced perioperative incidence of myocardial infarction (MI) [odds ratio(OR) = 0.68; 95% CI, 0.51 to 0.91; P = 0.01; I(2) = 41.0%] and contrast-induced acute kidney injury(AKI) (OR = 0.61; 95% CI, 0.38 to 0.98; P = 0.04; I(2) = 39.0%). Meta-regression and subgroup analyses confirmed that the major source of heterogeneity for the incidence of MI was male proportion (coefficient = -0.049; P = 0.047; adjusted R(2) = 0.988; P = 0.02 for subgroup difference).

Conclusions: The present meta-analysis of RCTs suggests that RIPC may offer cardiorenal protection by reducing the incidence of MI and AKI in patients undergoing elective PCI. Moreover, this effect on MI is more pronounced in male subjects. Future high-quality, large-scale clinical trials should focus on the long-term clinical effect of RIPC.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Searching process for the eligible…
Figure 1. Searching process for the eligible studies.
RCT, randomized controlled trial.
Figure 2. Forest plot for the incidence…
Figure 2. Forest plot for the incidence of myocardial infarction (MI).
RIPC significantly decreased the risk of MI [odds ratio (OR)  = 0.68, P = 0.01].RIPC, remote ischemic preconditioning.
Figure 3. Forest plot for incidence of…
Figure 3. Forest plot for incidence of acute kidney injury (AKI).
RIPC significantly prevented post-PCI AKI (OR = 0.61, P = 0.04). RIPC, remote ischemic preconditioning.
Figure 4. Meta-regression plots on the incidence…
Figure 4. Meta-regression plots on the incidence of MI in PCI[Male proportion (%); coefficient  = −0.049; P = 0.047)].

References

    1. Lindsey JB, Marso SP, Pencina M, Stolker JM, Kennedy KF, et al. (2009) Prognostic impact of periprocedural bleeding and myocardial infarction after percutaneous coronary intervention in unselected patients: results from the EVENT (evaluation of drug-eluting stents and ischemic events) registry. JACC Cardiovasc Interv 2:1074–1082.
    1. Leonardi S, Thomas L, Neely ML, Tricoci P, Lopes RD, et al. (2012) Comparison of the prognosis of spontaneous and percutaneous coronary intervention-related myocardial infarction. J Am Coll Cardiol 60:2296–2304.
    1. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, et al. (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44:1393–1399.
    1. Wi J, Ko YG, Kim JS, Kim BK, Choi D, et al. (2011) Impact of contrast-induced acute kidney injury with transient or persistent renal dysfunction on long-term outcomes of patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart 97:1753–1757.
    1. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135.
    1. Wong PC, Li Z, Guo J, Zhang A (2012) Pathophysiology of contrast-induced nephropathy. Int J Cardiol 158:186–192.
    1. Quintavalle C, Fiore D, De Micco F, Visconti G, Focaccio A, et al. (2012) Impact of a high loading dose of atorvastatin on contrast-induced acute kidney injury. Circulation 126:3008–3016.
    1. Kay J, Chow WH, Chan TM, Lo SK, Kwok OH, et al. (2003) Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA 289:553–558.
    1. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899.
    1. Kanoria S, Jalan R, Seifalian AM, Williams R, Davidson BR (2007) Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation 84:445–458.
    1. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, et al. (2005) Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol 46:450–456.
    1. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175.
    1. Iliodromitis EK, Kyrzopoulos S, Paraskevaidis IA, Kolocassides KG, Adamopoulos S, et al. (2006) Increased C reactive protein and cardiac enzyme levels after coronary stent implantation. Is there protection by remote ischaemic preconditioning? Heart 92:1821–1826.
    1. Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, et al. (2009) Cardiac remote ischemic preconditioning in coronary stenting (CRISP Stent) study: a prospective, randomized control trial. Circulation 119:820–827.
    1. Prasad A, Gossl M, Hoyt J, Lennon RJ, Polk L, et al. (2013) Remote ischemic preconditioning immediately before percutaneous coronary intervention does not impact myocardial necrosis, inflammatory response, and circulating endothelial progenitor cell counts: A single center randomized sham controlled trial. Catheter Cardiovasc Interv 81:930–936.
    1. Ghaemian A, Nouraei SM, Abdollahian F, Naghshvar F, Giussani DA, et al. (2012) Remote ischemic preconditioning in percutaneous coronary revascularization: a double-blind randomized controlled clinical trial. Asian Cardiovasc Thorac Ann 20:548–554.
    1. Ahmed RM, Mohamed EH, Ashraf M, Maithili S, Nabil F, et al. (2013) Effect of remote ischemic preconditioning on serum troponin T level following elective percutaneous coronary intervention. Catheter Cardiovasc Interv 82:E647–E653.
    1. Luo SJ, Zhou YJ, Shi DM, Ge HL, Wang JL, et al. (2013) Remote ischemic preconditioning reduces myocardial injury in patients undergoing coronary stent implantation. Can J Cardiol 29:1084–1089.
    1. Melo RMV, Costa LMA, Uchida A, Oikawa FTC, Ribeiro HB, et al. (2013) Prevention of myocardial injury after percutaneous coronary interventions with remote ischemic preconditioning. A comparative analysis with biomarkers and cardiac magnetic resonance. European Society of Cardiology. Amsterdam, Netherlands. pp. 1009.
    1. Zografos TA, Katritsis GD, Tsiafoutis I, Bourboulis N, Katsivas A, et al. (2014) Effect of One-cycle Remote Ischemic Preconditioning to Reduce Myocardial Injury During Percutaneous Coronary Intervention. Am J Cardiol In press.
    1. Lavi S, D'Alfonso S, Diamantouros P, Camuglia A, Garg P, et al. (2014) Remote Ischemic Postconditioning During Percutaneous Coronary Interventions: Remote Ischemic Postconditioning-Percutaneous Coronary Intervention Randomized Trial. Circ Cardiovasc Interv In press.
    1. Xu X, Zhou Y, Luo S, Zhang W, Zhao Y, et al. (2013) Effect of Remote Ischemic Preconditioning in the Elderly Patients With Coronary Artery Disease With Diabetes Mellitus Undergoing Elective Drug-Eluting Stent Implantation. Angiology In press.
    1. Er F, Nia AM, Dopp H, Hellmich M, Dahlem KM, et al. (2012) Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation 126:296–303.
    1. Igarashi G, Iino K, Watanabe H, Ito H (2013) Remote ischemic pre-conditioning alleviates contrast-induced acute kidney injury in patients with moderate chronic kidney disease. Circ J 77:3037–3044.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097.
    1. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, et al. (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12.
    1. Thygesen K, Alpert JS, White HD, Jaffe AS, Apple FS, et al. (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560.
    1. Carrasco-Chinchilla F, Munoz-Garcia AJ, Dominguez-Franco A, Millan-Vazquez G, Guerrero-Molina A, et al. (2013) Remote ischaemic postconditioning: does it protect against ischaemic damage in percutaneous coronary revascularisation? Randomised placebo-controlled clinical trial. Heart 99:1431–1437.
    1. Zhou C, Yao Y, Zheng Z, Gong J, Wang W, et al. (2012) Stenting technique, gender, and age are associated with cardioprotection by ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials. Eur Heart J 33:3070–3077.
    1. Luo W, Li B, Chen R, Huang R, Lin G (2008) Effect of ischemic postconditioning in adult valve replacement. Eur J Cardiothorac Surg 33:203–208.
    1. Thuny F, Lairez O, Roubille F, Mewton N, Rioufol G, et al. (2012) Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 59:2175–2181.
    1. Lonborg J, Kelbaek H, Vejlstrup N, Jorgensen E, Helqvist S, et al. (2010) Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc Interv 3:34–41.
    1. Deftereos S, Giannopoulos G, Tzalamouras V, Raisakis K, Kossyvakis C, et al. (2013) Renoprotective effect of remote ischemic post-conditioning by intermittent balloon inflations in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol 61:1949–1955.
    1. Munk K, Andersen NH, Schmidt MR, Nielsen SS, Terkelsen CJ, et al. (2010) Remote Ischemic Conditioning in Patients With Myocardial Infarction Treated With Primary Angioplasty: Impact on Left Ventricular Function Assessed by Comprehensive Echocardiography and Gated Single-Photon Emission CT. Circ Cardiovasc Imaging 3:656–662.
    1. Bøtker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, et al. (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375:727–734.
    1. Igarashi G, Iino K, Watanabe H, Ito H (2013) Remote Ischemic Pre-Conditioning Alleviates Contrast Induced Acute Kidney Injury in Patients With Moderate Chronic Kidney Disease. Circ J In press.
    1. Zimmerman RF, Ezeanuna PU, Kane JC, Cleland CD, Kempananjappa TJ, et al. (2011) Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int 80:861–867.
    1. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458.
    1. Penna C, Tullio F, Merlino A, Moro F, Raimondo S, et al. (2009) Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol 104:390–402.
    1. Crisostomo PR, Wang M, Wairiuko GM, Terrell AM, Meldrum DR (2006) Postconditioning in females depends on injury severity. J Surg Res 134:342–347.
    1. Xin P, Zhu W, Li J, Ma S, Wang L, et al. (2010) Combined local ischemic postconditioning and remote perconditioning recapitulate cardioprotective effects of local ischemic preconditioning. Am J Physiol Heart Circ Physiol 298:H1819–1831.
    1. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261.
    1. Heusch G (2012) Reduction of infarct size by ischaemic post-conditioning in humans: fact or fiction? Eur Heart J 33:13–15.
    1. Fan Y, Yang S, Cao Y, Huang Y (2013) Effects of acute and chronic atorvastatin on cadioprotection of ischemic postconditioning in isolated rat hearts. Cardiovasc Ther 31:187–192.
    1. Zhou C, Liu Y, Yao Y, Zhou S, Fang N, et al. (2013) β-blockers and volatile anesthetics may attenuate cardioprotection by remote preconditioning in adult cardiac surgery: a meta-analysis of 15 randomized trials. J Cardiothorac Vasc Anesth 27:305–311.

Source: PubMed

3
Subscribe