Diagnostic Value of Muscle Ultrasound for Myopathies and Myositis

Jemima Albayda, Nens van Alfen, Jemima Albayda, Nens van Alfen

Abstract

Purpose of review: The purpose of this review is to critically discuss the use of ultrasound in the evaluation of muscle disorders with a particular focus on the emerging use in inflammatory myopathies.

Recent findings: In myopathies, pathologic muscle shows an increase in echogenicity. Muscle echogenicity can be assessed visually, semi-quantitatively, or quantitatively using grayscale analysis. The involvement of specific muscle groups and the pattern of increase in echogenicity can further point to specific diseases. In pediatric neuromuscular disorders, the value of muscle ultrasound for screening and diagnosis is well-established. It has also been found to be a responsive measure of disease change in muscular dystrophies. In chronic forms of myositis like inclusion body myositis, ultrasound is very suitable for detecting markedly increased echogenicity and atrophy in affected muscles. Acute cases of muscle edema show only a mild increase in echogenicity, which can also reverse with successful treatment. Muscle ultrasound is an important imaging modality that is highly adaptable to study various muscle conditions. Although its diagnostic value for neuromuscular disorders is high, the evidence in myositis has only begun to accrue in earnest. Further systematic studies are needed, especially in its role for detecting muscle edema.

Keywords: Diagnostic test; Muscle echogenicity; Muscle ultrasound; Myopathies; Myositis.

Conflict of interest statement

Nens van Alfen acts as a muscle ultrasound consultant for Dynacure, with fee payment to employer.

Figures

Fig. 1
Fig. 1
A normal vastus lateralis (A, B) and tibialis anterior (C, D) in transverse and longitudinal views. SC, subcutaneous tissue; VL, vastus lateralis; VI, vastus intermedius; TA, tibialis anterior; EDL, extensor digitorum longus; IM, interosseous membrane
Fig. 2
Fig. 2
Heckmatt scoring using vastus lateralis muscle (disease examples from established myositis patients); grade 1 is normal; grade 2 shows a slight increase in echogenicity without architecture loss or attenuation. Grade 3 shows clearly increased muscle echogenicity, loss of muscle architecture, and some attenuation causing less visibility of deeper structures. Grade 4 shows a completely white muscle with loss of recognizable features and strong attenuation of the ultrasound signal so no deep structures can be discerned beyond the superficial layer of muscle. VL, vastus lateralis
Fig. 3
Fig. 3
Quantitative grayscale analysis in a healthy (A) and diseased muscle (B). The mean echogenicity (EI) can be read from the histogram output using Image J (https://imagej.nih.gov/ij/). In (B), the muscle can be seen as having an increase in echogenicity compared with overlying subcutaneous tissue and normal muscle in (A). Mean grayscale level in the normal vastus lateralis is 91 (A) versus 130 in the diseased (B). VL, vastus lateralis; VI, vastus intermedius
Fig. 4
Fig. 4
Increased echogenicity in a “ground glass” pattern (A), and a “moth-eaten” pattern (B)
Fig. 5
Fig. 5
Dermatomyositis showing increased echogenicity in the subcutaneous tissue, focally altered and “see-through” echogenicity within the muscle (A), as well as calcinosis (*) causing posterior shadowing (B). SC, subcutaneous tissue; Br, brachialis; Hum, humerus; VI, vastus intermedius; Fem, femur
Fig. 6
Fig. 6
Affected flexor digitorum profundus FDP (B) and gastrocnemius (D) muscles in IBM showing markedly increase echogenicity and atrophy, in comparison with normal (A, C). fdp, flexor digitorum profundus; fcu, flexor carpi ulnaris; SC, subcutaneous tissue

References

    1. Ikai M, Fukunaga T. Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1968;26:26–32.
    1. Maurits NM, Bollen AE, Windhausen A, De Jager AEJ, Van Der Hoeven JH. Muscle ultrasound analysis: normal values and differentiation between myopathies and neuropathies. Ultrasound Med Biol. 2003;29:215–225.
    1. van Alfen N, Mah JK. Neuromuscular ultrasound: a new tool in your toolbox. Can J Neurol Sci. 2018;45:504–515.
    1. Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr. 1982;101:656–660.
    1. Gellhorn AC, Stumph JM, Zikry HE, Creelman CA, Welbel R. Ultrasound measures of muscle thickness may be superior to strength testing in adults with knee osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord. 2018;19:350.
    1. Legerlotz K, Smith HK, Hing WA. Variation and reliability of ultrasonographic quantification of the architecture of the medial gastrocnemius muscle in young children. Clin Physiol Funct Imaging. 2010;30:198–205.
    1. Selva Raj I, Bird SR, Shield AJ. Ultrasound measurements of skeletal muscle architecture are associated with strength and functional capacity in older adults. Ultrasound Med Biol. 2017;43:586–594.
    1. Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet. 1980;315:1389–1390.
    1. Pillen S, Tak RO, Zwarts MJ, Lammens MMY, Verrijp KN, Arts IMP, van der Laak JA, Hoogerbrugge PM, van Engelen BGM, Verrips A. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol. 2009;35:443–446.
    1. van Alfen N, Gijsbertse K, de Korte CL. How useful is muscle ultrasound in the diagnostic workup of neuromuscular diseases? Curr Opin Neurol. 2018;31:568–574.
    1. Rahmani N, Mohseni-Bandpei MA, Vameghi R, Salavati M, Abdollahi I. Application of ultrasonography in the assessment of skeletal muscles in children with and without neuromuscular disorders: a systematic review. Ultrasound Med Biol. 2015;41:2275–2283.
    1. Mah JK, van Alfen N. Neuromuscular ultrasound: clinical applications and diagnostic values. Can J Neurol Sci. 2018;45:605–619.
    1. Pillen S, Verrips A, van Alfen N, Arts IMP, Sie LTL, Zwarts MJ. Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul Disord. 2007;17:509–516.
    1. Ng KW, Connolly AM, Zaidman CM. Quantitative muscle ultrasound measures rapid declines over time in children with SMA type 1. J Neurol Sci. 2015;358:178–182.
    1. Hwang H-E, Hsu T-R, Lee Y-H, Wang H-K, Chiou H-J, Niu D-M. Muscle ultrasound: a useful tool in newborn screening for infantile onset Pompe disease. Medicine (Baltimore) 2017;96:e8415.
    1. Jansen M, van Alfen N, van der Nijhuis Sanden MWG, van Dijk JP, Pillen S, de Groot IJM. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul Disord. 2012;22:306–317.
    1. Goselink RJM, Schreuder THA, van Alfen N, de Groot IJM, Jansen M, Lemmers RJLF, van der Vliet PJ, van der Stoep N, Theelen T, Voermans NC, van der Maarel SM, van Engelen BGM, Erasmus CE. Facioscapulohumeral dystrophy in childhood: a nationwide natural history study. Ann Neurol. 2018;84:627–637.
    1. Arts IMP, Overeem S, Pillen S, Kleine BU, Boekestein WA, Zwarts MJ, Jurgen Schelhaas H. Muscle ultrasonography: a diagnostic tool for amyotrophic lateral sclerosis. Clin Neurophysiol. 2012;123:1662–1667.
    1. Tsuji Y, Noto Y-I, Shiga K, Teramukai S, Nakagawa M, Mizuno T. A muscle ultrasound score in the diagnosis of amyotrophic lateral sclerosis. Clin Neurophysiol. 2017;128:1069–1074.
    1. Trip J, Pillen S, Faber CG, van Engelen BGM, Zwarts MJ, Drost G. Muscle ultrasound measurements and functional muscle parameters in non-dystrophic myotonias suggest structural muscle changes. Neuromuscul Disord. 2009;19:462–467.
    1. Noto Y-I, Shiga K, Tsuji Y, Kondo M, Tokuda T, Mizuno T, et al. Contrasting echogenicity in flexor digitorum profundus-flexor carpi ulnaris: a diagnostic ultrasound pattern in sporadic inclusion body myositis. Muscle Nerve. 2014;49:745–748.
    1. Reimers CD, Fleckenstein JL, Witt TN, Müller-Felber W, Pongratz DE. Muscular ultrasound in idiopathic inflammatory myopathies of adults. J Neurol Sci. 1993;116:82–92.
    1. Brockmann K, Becker P, Schreiber G, Neubert K, Brunner E, Bönnemann C. Sensitivity and specificity of qualitative muscle ultrasound in assessment of suspected neuromuscular disease in childhood. Neuromuscul Disord. 2007;17:517–523.
    1. van Alfen N, Nienhuis M, Zwarts MJ, Pillen S. Detection of fibrillations using muscle ultrasound: diagnostic accuracy and identification of pitfalls. Muscle Nerve. 2011;43:178–182.
    1. Boon AJ, Sekiguchi H, Harper CJ, Strommen JA, Ghahfarokhi LS, Watson JC, Sorenson EJ. Sensitivity and specificity of diagnostic ultrasound in the diagnosis of phrenic neuropathy. Neurology. 2014;83:1264–1270.
    1. Zaidman CM, Wu JS, Kapur K, Pasternak A, Madabusi L, Yim S, Pacheck A, Szelag H, Harrington T, Darras BT, Rutkove SB. Quantitative muscle ultrasound detects disease progression in Duchenne muscular dystrophy. Ann Neurol. 2017;81:633–640.
    1. Goselink RJM, Schreuder THA, Mul K, Voermans NC, Erasmus CE, van Engelen BGM, van Alfen N. Muscle ultrasound is a responsive biomarker in facioscapulohumeral dystrophy. Neurology. 2020;94:e1488–e1494.
    1. Arts IMP, Overeem S, Pillen S, Jurgen Schelhaas H, Zwarts MJ. Muscle changes in amyotrophic lateral sclerosis: a longitudinal ultrasonography study. Clin Neurophysiol. 2011;122:623–628.
    1. Pathak S, Caress JB, Wosiski-Kuhn M, Milligan C, Williams D, Cartwright MS. A pilot study of neuromuscular ultrasound as a biomarker for amyotrophic lateral sclerosis. Muscle Nerve. 2019;59:181–186.
    1. Pillen S, Arts IMP, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37:679–693.
    1. Mul K, Horlings CGC, Vincenten SCC, Voermans NC, van Engelen BGM, van Alfen N. Quantitative muscle MRI and ultrasound for facioscapulohumeral muscular dystrophy: complementary imaging biomarkers. J Neurol. 2018;265:2646–2655.
    1. Schulze M, Kötter I, Ernemann U, Fenchel M, Tzaribatchev N, Claussen CD, Horger M. MRI findings in inflammatory muscle diseases and their noninflammatory mimics. AJR Am J Roentgenol. 2009;192:1708–1716.
    1. Leeuwenberg K, Christopher-Stine L, Bingham Iii CO, Paik JJ, Tiniakou E, Billings S, et al. Sonographic appearance of inflammatory myopathies: increased muscle echointensity and qualitative changes [abstract]. In: American College of Rheumatology Annual Meeting. 2018.
    1. van Baalen A, Stephani U. Muscle fibre type grouping in high resolution ultrasound. Arch Dis Child. 2005;90:1189.
    1. Stonecipher MR. Dermatomyositis with normal muscle enzyme concentrations. A single-blind study of the diagnostic value of magnetic resonance imaging and ultrasound. Arch Dermatol. 1994;130:1294–1299.
    1. Habers GEA, Van Brussel M, Bhansing KJ, Hoppenreijs EP, Janssen AJWM, Van Royen-Kerkhof A, et al. Quantitative muscle ultrasonography in the follow-up of juvenile dermatomyositis. Muscle Nerve. 2015;52:540–546.
    1. Mittal GA, Wadhwani R, Shroff M, Sukthankar R, Pathan E, Joshi VR. Ultrasonography in the diagnosis and follow-up of idiopathic inflammatory myopathies--a preliminary study. J Assoc Physicians India. 2003;51:252–256.
    1. Bhansing KJ, Hoppenreijs EP, Janssen AJ, van Royen-Kerkhof A, Nijhuis-Van der Sanden MW, van Riel PLCM, et al. Quantitative muscle ultrasound: a potential tool for assessment of disease activity in juvenile dermatomyositis. Scand J Rheumatol. 2014;43:339–341.
    1. Bhansing KJ, Van Rosmalen MH, Van Engelen BG, Vonk MC, Van Riel PL, Pillen S. Increased fascial thickness of the deltoid muscle in dermatomyositis and polymyositis: an ultrasound study: deltoid muscle in DM and PM. Muscle Nerve. 2015;52:534–539.
    1. Yoshida K, Nishioka M, Matsushima S, Joh K, Oto Y, Yoshiga M, et al. Brief report: power Doppler ultrasonography for detection of increased vascularity in the fascia: a potential early diagnostic tool in fasciitis of dermatomyositis. Arthritis Rheumatol (Hoboken, NJ) 2016;68:2986–2991.
    1. Nodera H, Takamatsu N, Matsui N, Mori A, Terasawa Y, Shimatani Y, Osaki Y, Maruyama K, Izumi Y, Kaji R. Intramuscular dissociation of echogenicity in the triceps surae characterizes sporadic inclusion body myositis. Eur J Neurol. 2016;23:588–596.
    1. Albayda J, Christopher-Stine L, Bingham Iii CO, Paik JJ, Tiniakou E, Billings S, et al. Pattern of muscle involvement in inclusion body myositis: a sonographic study. Clin Exp Rheumatol. 2018.
    1. Leeuwenberg KE, van Alfen N, Christopher-Stine L, Paik JJ, Tiniakou E, Mecoli C, et al. Ultrasound can differentiate inclusion body myositis from disease mimics. Muscle Nerve. 2020;61(6):783–788.
    1. Hsieh M, Tokoro S, Ugajin T, Namiki T, Miura K, Yokozeki H. Ultrasonography as an auxiliary diagnostic tool for morphea profunda: a case report. J Dermatol. 2019;46:626–630.
    1. Voermans NC, Pillen S, de Jong EM, Creemers MC, Lammens M, van Alfen N. Morphea profunda presenting as a neuromuscular mimic. J Clin Neuromuscul Dis. 2008;9:407–414.
    1. Melani L, Cardinali C, Giomi B, Schincaglia E, Caproni M, Fabbri P. Case study: periodic follow-up is necessary in morphea profunda to identify systemic evolution. Skinmed. 2005;4:188–190.
    1. Kaya A, Kara M, Tiftik T, Tezcan ME, Ozel S, Ersöz M, et al. Ultrasonographic evaluation of the muscle architecture in patients with systemic lupus erythematosus. Clin Rheumatol. 2013;32:1155–1160.
    1. König T, Steffen J, Rak M, Neumann G, von Rohden L, Tönnies KD. Ultrasound texture-based CAD system for detecting neuromuscular diseases. Int J Comput Assist Radiol Surg. 2015;10:1493–1503.
    1. Dubois GJR, Bachasson D, Lacourpaille L, Benveniste O, Hogrel J-Y. Local texture anisotropy as an estimate of muscle quality in ultrasound imaging. Ultrasound Med Biol. 2018 [cited 2018 Mar 6]; Available from: .
    1. Nodera H, Sogawa K, Takamatsu N, Hashiguchi S, Saito M, Mori A, Osaki Y, Izumi Y, Kaji R. Texture analysis of sonographic muscle images can distinguish myopathic conditions. J Med Investig. 2019;66:237–247.
    1. Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods. PLoS One. 2017;12:e0184059.
    1. Burlina P, Joshi N, Billings S, Wang I-J, Albayda J. Deep embeddings for novelty detection in myopathy. Comput Biol Med. 2019;105:46–53.
    1. Meng C, Adler R, Peterson M, Kagen L. Combined use of power Doppler and gray-scale sonography: a new technique for the assessment of inflammatory myopathy. J Rheumatol. 2001;28:1271–1282.
    1. Weber M-A, Jappe U, Essig M, Krix M, Ittrich C, Huttner BH, Meyding-Lamadé U, Hartmann M, Kauczor HU, Delorme S. Contrast-enhanced ultrasound in dermatomyositis- and polymyositis. J Neurol. 2006;253:1625–1632.
    1. Weber M-A, Krix M, Jappe U, Huttner HB, Hartmann M, Meyding-Lamadé U, Essig M, Fiehn C, Kauczor HU, Delorme S. Pathologic skeletal muscle perfusion in patients with myositis: detection with quantitative contrast-enhanced US—initial results. Radiology. 2006;238:640–649.
    1. Botar-Jid C, Damian L, Dudea SM, Vasilescu D, Rednic S, Badea R. The contribution of ultrasonography and sonoelastography in assessment of myositis. Med Ultrason. 2010;12:120–126.
    1. Song Y, Lee S, Yoo DH, Jang K-S, Bae J. Strain sonoelastography of inflammatory myopathies: comparison with clinical examination, magnetic resonance imaging and pathologic findings. Br J Radiol. 2016;89:20160283.
    1. Berko NS, Hay A, Sterba Y, Wahezi D, Levin TL. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI? Pediatr Radiol. 2015;45:1522–1528.
    1. Bachasson D, Dubois GJR, Allenbach Y, Benveniste O, Hogrel J-Y. Muscle shear wave elastography in inclusion body myositis: feasibility, reliability and relationships with muscle impairments. Ultrasound Med Biol. 2018;44:1423–1432.
    1. Alfuraih AM, O’Connor P, Tan AL, Hensor EMA, Ladas A, Emery P, Wakefield RJ. Muscle shear wave elastography in idiopathic inflammatory myopathies: a case–control study with MRI correlation. Skelet Radiol. 2019;48:1209–1219.
    1. Ahmad OF, Saade D, Foley AR, Bönnemann C, Lehky T. Utility of neuromuscular ultrasound for electromyographic needle localization within diseased muscle. Muscle Nerve. 2019;60:E38–E40.
    1. Formenti P, Umbrello M, Coppola S, Froio S, Chiumello D. Clinical review: peripheral muscular ultrasound in the ICU. Ann Intensive Care. 2019;9:57.
    1. Alfen NV, Gilhuis HJ, Keijzers JP, Pillen S, Van Dijk JP. Quantitative facial muscle ultrasound: feasibility and reproducibility. Muscle Nerve. 2013;48:375–380.
    1. Van Den Engel-Hoek L, Van Alfen N, De Swart BJM, De Groot IJM, Pillen S. Quantitative ultrasound of the tongue and submental muscles in children and young adults. Muscle Nerve. 2012;46:31–37.
    1. Pillen S, Van Alfen N. Muscle ultrasound from diagnostic tool to outcome measure--quantification is the challenge. Muscle Nerve. 2015;52:319–320.
    1. O’brien TG, Cazares Gonzalez ML, Ghosh PS, Mandrekar J, Boon AJ. Reliability of a novel ultrasound system for gray-scale analysis of muscle: muscle ultrasound reliability. Muscle Nerve. 2017;56:408–412.

Source: PubMed

3
Subscribe